NFATc3 is necessary for macrophage iNOS expression during myocardial ischemia and reperfusion

 

American Journal of BioMedicine  Volume 2, Issue 11, pages1188-1196 November 2014


You-lin Lee; Qiong Chung;  Lei Zhang; Zhu Shen; Jie Chan

Abstract

In the present study, we sought to examine whether inhibition NFATc3, improves cardiac function and reduces heart damage during IR. Hearts of male C57BL/J6 and NFATc3 knockout (KO) mice perfused by Langendorff were subjected to 25 min of global ischemia followed by 30 min reperfusion. Cardiac function was monitored throughout the perfusion period. Myocardial damage was extrapolated from LDH activity in the coronary effluent. At the end of reperfusion. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated after I/R. In the NFATc3 knockout (KO) mice, left ventricular developed pressure, rate pressure product, contraction and relaxation rates and coronary flow significantly improved following reperfusion compared with C57BL/J6 mice.

Keywords: Myocardial ischemia and reperfusion; NFATc3; Langendorff; macrophage iNOS


Limited Access               HTML                 Full Text-PDF                Feedback


References

1. Rodrigo R, Libuy M, Feliu F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers 2013;35:773–790. [PubMed]

2. Berry MF, Woo YJ, Pirolli TJ, Bi, et al. Administration of a tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J Heart Lung Transplant 2004;23:1061–1068. [PubMed]

3. Xiong J, Xue FS, Yuan YJ, et al. Cholinergic anti-inflammatory pathway: a possible approach to protect against myocardial ischemia reperfusion injury. Chin Med J (Engl) 2010;123: 2720–2726. [PubMed]

4. Kim SJ, Kim YK, Takagi G,et al. Enhanced iNOS function in myocytes one day after brief ischemic episode. Am J Physiol Heart Circ Physiol 2002;282:H423–H428. [Abstract/FREE Full Text]

5. Chan. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001;21: 2–14. [PubMed]

6. Austin EA, Yousif NG, Ao L, Cleveland JC, Fullerton DA, Meng X. Ghrelin reduces myocardial injury following global ischemia and reperfusion via suppression of myocardial inflammatory response. American Journal of BioMedicine 2013;1:38-48.  [Abstract/FREE Full Text]

7. Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ. IL-6 induces PI-3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res 2006; 69:164–177. [Abstract/FREE Full Text]

8. Bolli R.Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001; 33:1897–1918. [PubMed]

9. Bolli R, Dawn B, Tang XL,et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998;93(5):325-38. [PubMed]

10. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001 ;33(11):1897-918. [PubMed]

11. Chandrasekar B, Smith JB, Freeman GL. Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 2001;103: 2296–2302. [PubMed]

12. Wang Q, Heidi L. Weiss HL, Chow CW, Evers M. NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells. 2011 PLOS ONE 10.1371. [Abstract/FREE Full Text]

13. Hogan PG, Chen L, Nardone J, Rao. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17: 2205–2232. [PubMed]

14. de la Pompa JL, Timmerman LA, Takimoto H, et al.Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 1998;392: 182–186. [PubMed]

15. Beals CR, Sheridan CM, Gardner P., Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 1997;275:1930–1934. [PubMed]

16. Ho SN, Thomas DJ, Timmerman LA, Li X, Francke U, Crabtree GR. NFATc3, a lymphoid-specific NFATc family member that is calcium-regulated and exhibits distinct DNA binding specificity. J Biol Chem. 1995;270(34):19898-907. [PubMed]

17. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science 1988;241(4862):202-5. [PubMed]

18. Zhou L, Zang G, Zhang G, et al. MicroRNA and mRNA Signatures in Ischemia Reperfusion Injury in Heart Transplantation. PLoS ONE 2013; 8(11): e79805. [PubMed/NCBI]

19. MicroRNA and mRNA Signatures in Ischemia Reperfusion Injury in Heart Transplantation. PLoS ONE 2014;9(6): e101640.

20. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 2011;301:H1723–1741. [PubMed]

21. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest 1985;76:1713–1719. [PubMed]

22. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121–1135. [PubMed]

Print Friendly, PDF & Email