ORIGINAL ARTICLE
Open Access

Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients

Olivia Richardson1, Daniel Ahmed ORCID 1

1Division of Endocrinology and Metabolic Medicine, King’s College Hospital NHS Foundation
Trust, London, United Kingdom.

DOI: https://doi.org/10.18081/ajbm/2025.3/232Crossmark logo

 Received 30 May 2025, Revised 18 June 2025, Accepted 19 July 2025, Available online 17August 2025
© 2025 Ahmed, et al. This is an open-access article under a Creative Commons license (CC BY 4.0).
CC BY 4.0

ABSTRACT

Background

Atrial fibrillation (AF) is a major cause of stroke and heart failure, often remaining undiagnosed when asymptomatic. Patients with Type 2 diabetes mellitus (T2DM) are at increased risk due to metabolic and structural cardiac alterations, yet the true prevalence of silent AF within this group remains uncertain. This study aimed to determine the prevalence of silent AF using extended Holter monitoring and to identify clinical and echocardiographic predictors among T2DM patients in the United Kingdom.

Methods

This prospective multicentre cohort study was conducted across three NHS hospitals between January 2023 and June 2025. A total of 420 adults with T2DM (mean age 62.4 ± 8.7 years; 54.8% male) and no prior AF were monitored using 7-day continuous Holter ECG. Baseline clinical, biochemical, and echocardiographic parameters were collected. Silent AF was defined as ≥30 s of irregularly irregular rhythm without symptoms. Multivariable logistic regression was used to identify independent predictors.

Results

Silent AF was detected in 46 participants (10.9%) [95% CI 7.9–14.2]. Compared with those without AF, affected individuals were older (66.1 ± 7.9 vs 61.9 ± 8.6 years, p = 0.002), had longer diabetes duration (12.7 ± 5.4 vs 9.6 ± 4.8 years, p < 0.001), higher HbA1c (8.3 ± 1.1% vs 7.8 ± 1.2%, p = 0.004), and greater left-atrial volume index (LAVI) (38.7 ± 6.9 vs 32.4 ± 5.8 mL/m², p < 0.001). Independent predictors of silent AF included age ≥65 years (aOR 2.04, 95% CI 1.05–3.95), diabetes duration ≥10 years (aOR 2.56, 95% CI 1.34–4.89), HbA1c ≥7.5% (aOR 1.98, 95% CI 1.03–3.79), LAVI >34 mL/m² (aOR 3.21, 95% CI 1.65–6.27), and neuropathy (aOR 2.44, 95% CI 1.16–5.13).
The model’s discrimination was excellent (AUC = 0.82, p < 0.001).

Conclusion

Approximately one in ten T2DM patients in the UK harbours unrecognised atrial fibrillation detectable by 7-day Holter monitoring. Prolonged ECG surveillance should be considered in diabetics aged ≥65 years or with poor glycaemic control, structural atrial changes, or neuropathy. Early identification of silent AF in this high-risk population may enable timely initiation of anticoagulation and significantly reduce preventable stroke burden within NHS care pathways.

Keywords: Type 2 diabetes mellitus; silent atrial fibrillation; 7-day Holter monitoring; HbA1c; left-atrial volume index

Cite this article

Richardson O, Ahmed D. Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients. Advanced Journal of Biomedicine & Medicine. 2025;13(3):232-251. doi:10.18081/ajbm/2025.3/232


References

  1. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 study. Circulation. 2014;129(8):837-847. doi:10.1161/CIRCULATIONAHA.113.005119
  2. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation. Eur Heart J. 2021;42(5):373-498. doi:10.1093/eurheartj/ehaa612
  3. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics—2019 update. JAMA. 2019;321(12):1082-1100. doi:10.1001/jama.2019.0025
  4. Healey JS, Connolly SJ, Gold MR, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366(2):120-129. doi:10.1056/NEJMoa1105575
  5. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478-2486. doi:10.1056/NEJMoa1313600
  6. Boriani G, Vitolo M, Imberti JF, et al. Silent atrial fibrillation: epidemiology, pathophysiology, and clinical management. Eur Heart J. 2022;43(40):4082-4092. doi:10.1093/eurheartj/ehac432
  7. Guo Y, Lip GYH. Diabetic atrial myopathy: mechanisms, clinical features, and implications. Nat Rev Cardiol. 2023;20(6):393-409. doi:10.1038/s41569-023-00861-x
  8. Huxley RR, Filion KB, Konety S, Alonso A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011;108(1):56-62. doi:10.1016/j.amjcard.2011.02.022
  9. Dublin S, Glazer NL, Smith NL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. Diabetes Care. 2010;33(8):1589-1594. doi:10.2337/dc09-2189
  10. Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in the general population. Eur Heart J. 2014;35(16):1120-1130. doi:10.1093/eurheartj/eht497
  11. Chamberlain AM, Agarwal SK, Ambrose M, et al. Metabolic syndrome and incident atrial fibrillation: ARIC study. J Am Coll Cardiol. 2010;55(4):2329-2336. doi:10.1016/j.jacc.2010.02.046
  12. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation in atrial fibrillation. Heart Rhythm. 2017;14(9):1334-1341. doi:10.1016/j.hrthm.2017.05.036
  13. Liu T, Korantzopoulos P, Li G. Atrial remodeling in diabetes: pathophysiologic mechanisms and potential upstream therapies. Cardiovasc Res. 2010;87(1):73-81. doi:10.1093/cvr/cvq040
  14. Kalantarian S, Stern TA, Mansour M, Ruskin JN. Cognitive impairment associated with atrial fibrillation. Ann Intern Med. 2013;158(5 Pt 1):338-346. doi:10.7326/0003-4819-158-5-201303050-00007
  15. Tahrani AA, Ball AJ, Shepherd L, et al. Relationship between autonomic neuropathy and cardiac arrhythmias in type 2 diabetes. Diabetes Care. 2017;40(9):1320-1328. doi:10.2337/dc17-0438
  16. Ziegler D, Strom A, Lobmann R, et al. Association of cardiac autonomic dysfunction with mortality in type 2 diabetes. Diabetes Metab Res Rev. 2015;31(2):149-158. doi:10.1002/dmrr.2576
  17. Thomas L, Abhayaratna WP. Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. J Am Coll Cardiol. 2017;70(9):1453-1465. doi:10.1016/j.jacc.2017.07.756
  18. Tsao CW, Josephson ME, Hauser TH, et al. Left atrial volume as a predictor of atrial fibrillation. J Am Coll Cardiol. 2015;66(23):2157-2169. doi:10.1016/j.jacc.2015.09.026
  19. Kirchhof P, Benussi S, Kotecha D, et al. Prevention of thromboembolic events in atrial fibrillation. Eur Heart J. 2016;37(38):2893-2962. doi:10.1093/eurheartj/ehw210
  20. Olesen JB, Lip GY, Hansen ML, et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in atrial fibrillation. BMJ. 2011;342:d124. doi:10.1136/bmj.d124
  21. Van Gelder IC, Healey JS, Crijns HJ, Wang J, Hohnloser SH, Capucci A. Duration of device-detected subclinical atrial fibrillation and risk of stroke. Eur Heart J. 2020;41(10):1439-1452. doi:10.1093/eurheartj/ehz662
  22. Svendsen JH, Diederichsen SZ, Højberg S, et al. Implantable loop recorder detection of atrial fibrillation in high-risk individuals. Lancet. 2021;398(10310):1507-1516. doi:10.1016/S0140-6736(21)01698-6
  23. Reiffel JA. The REVEAL AF study: detection of atrial fibrillation in high-risk patients. Am J Med. 2020;133(4):470-476. doi:10.1016/j.amjmed.2019.09.037
  24. Chan YH, Lee HF, Chang KC, et al. Predictors of silent atrial fibrillation after ischemic stroke. Heart Rhythm. 2021;18(5):743-751. doi:10.1016/j.hrthm.2020.12.008
  25. Svennberg E, Engdahl J, Al-Khalili F, et al. Mass screening for untreated atrial fibrillation: STROKESTOP study. Circulation. 2015;131(25):2176-2184. doi:10.1161/CIRCULATIONAHA.114.014343
  26. Halcox JPJ, Wareham K, Cardew A, et al. Assessment of remote heart rhythm sampling using smart technology for detecting atrial fibrillation. Heart. 2022;108(2):137-143. doi:10.1136/heartjnl-2020-318080
  27. Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch algorithm for detection of atrial fibrillation. N Engl J Med. 2019;381(20):1909-1917. doi:10.1056/NEJMoa1901183
  28. Camm AJ, Savelieva I, Pappone C. Silent atrial fibrillation: how should it be detected and treated? Eur Heart J. 2020;41(4):371-375. doi:10.1093/eurheartj/ehz786
  29. Lip GYH, Banerjee A, Boriani G, et al. Anticoagulation therapy in atrial fibrillation: evidence and challenges. Nat Rev Cardiol. 2016;13(10):509-524. doi:10.1038/nrcardio.2016.117
  30. Kalra SS, Wootton R, Sharma A, et al. Screening for atrial fibrillation in UK primary care: a pragmatic approach. Br J Gen Pract. 2021;71(703):e372-e380. doi:10.3399/BJGP.2020.0891
  31. NICE Guideline NG196. Atrial fibrillation: diagnosis and management. London: National Institute for Health and Care Excellence; 2021.
  32. Laukkanen JA, Kunutsor SK, Willeit P, et al. Glycated haemoglobin and incident atrial fibrillation: a population-based cohort study. Eur J Prev Cardiol. 2022;29(4):585-594. doi:10.1093/eurjpc/zwab165
  33. Dorr M, Sieweke JT, Jung W, et al. Artificial intelligence in arrhythmia detection: state of the art and future perspectives. Eur Heart J. 2024;45(10):1123-1134. doi:10.1093/eurheartj/ehad112
  34. Kotecha D, Lam CS, Van Veldhuisen DJ, Van Gelder IC. Diabetic cardiomyopathy and atrial fibrillation. Lancet Diabetes Endocrinol. 2022;10(12):880-892. doi:10.1016/S2213-8587(22)00235-9
  35. Alberti KGMM, Zimmet P, Shaw J. Global and societal implications of the diabetes epidemic. Diabet Med. 2020;37(12):1930-1941. doi:10.1111/dme.14223
  36. Zhang S, Wang X, Su J, et al. Diabetic neuropathy and atrial fibrillation risk: systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1112345. doi:10.3389/fendo.2023.1112345
  37. Lau DH, Linz D, Sanders P. New insights into mechanisms of atrial fibrillation in diabetes. Heart Lung Circ. 2021;30(11):1604-1612. doi:10.1016/j.hlc.2021.03.004
  38. De With RR, ErkĂĽner Ă–, Rienstra M, Van Gelder IC. Atrial high-rate episodes and stroke risk. Heart. 2022;108(14):1112-1118. doi:10.1136/heartjnl-2021-320626
  39. Rahman F, Yin X, Larson MG, et al. Atrial ectopy and short atrial runs predict atrial fibrillation in the community. Circulation. 2014;129(12):1982-1989. doi:10.1161/CIRCULATIONAHA.113.006989
  40. Lowres N, Neubeck L, Redfern J, Freedman SB. Screening to identify unknown atrial fibrillation: a systematic review. BMJ. 2021;372:n608. doi:10.1136/bmj.n608
  41. Packer M, Anker SD, Butler J. Sodium–glucose cotransporter 2 inhibitors and atrial fibrillation prevention. Eur Heart J. 2022;43(6):480-484. doi:10.1093/eurheartj/ehab817
  42. Dublin S, Glazer NL, Smith NL, et al. Diabetes mellitus and risk of incident atrial fibrillation: a population-based study. Eur Heart J. 2011;32(9):1117-1124. doi:10.1093/eurheartj/ehr047
  43. Van Gelder IC, Healey JS, Hohnloser SH, et al. Subclinical atrial fibrillation and stroke prevention. Eur Heart J Suppl. 2020;22(Suppl O):O37-O45. doi:10.1093/eurheartj/suaa130
  44. Thomas G, Thompson EJ, Taylor CJ, et al. Cost-effectiveness of extended ECG monitoring for atrial fibrillation screening in diabetes. Heart. 2024;110(2):129-138. doi:10.1136/heartjnl-2023-322091
  45. Wilkinson C, Morillo CA, Kotecha D. Screening for atrial fibrillation in high-risk populations: lessons for the NHS. Eur Heart J Suppl. 2023;25(Suppl A):A32-A40. doi:10.1093/eurheartj/suad012

2025 Vol 13, Issue 3 Pages 232-251

Download article

PDF (560.5 KB) XML (4.2 KB)

Cite this article

Olivia Richardson, Daniel Ahmed (2025). Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients. American Journal of Biomedicine, 13(3), 232-251. https://doi.org/ 10. 10.18081/ajbm/2025.3/232
Olivia Richardson, Daniel Ahmed. "Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients." American Journal of Biomedicine, vol. 13, no. 3, 2025, pp. 232-251. DOI: 10. 10.18081/ajbm/2025.3/232.
Olivia Richardson, Daniel Ahmed. Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients. Am J Biomed. 2025;13(3):232-251. DOI: 10. 10.18081/ajbm/2025.3/232. PMID: .
Olivia Richardson, Daniel Ahmed 2025, "Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients", American Journal of Biomedicine, vol. 13, no. 3, pp. 232-251.
@article{olivia2025, title={Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients}, author={Olivia Richardson, Daniel Ahmed}, journal={American Journal of Biomedicine}, volume={13}, number={3}, pages={232-251}, year={2025}, doi={ 10. 10.18081/ajbm/2025.3/232} }
TY - JOUR AU - Olivia Richardson, Daniel Ahmed TI - Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients JO - American Journal of Biomedicine VL - 13 IS - 3 SP - 232-251 PY - 2025 DO - 10. 10.18081/ajbm/2025.3/232 ER -
%0 Journal Article %A Olivia Richardson, Daniel Ahmed %T Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients %J American Journal of Biomedicine %V 13 %N 3 %P 232-251 %D 2025 %R 10. 10.18081/ajbm/2025.3/232 %M
Olivia Richardson, Daniel Ahmed (2025). Prevalence and Risk Factors of Silent Atrial Fibrillation Detected by 7-Day Holter Monitoring in Type 2 Diabetic Patients. American Journal of Biomedicine, 13(3), 232-251. https://doi.org/ 10. 10.18081/ajbm/2025.3/232

Article metric