Effects of caffeic acid on doxorubicin induced cardiotoxicity in rats

AJBM crossMark

 

 

Abstract

Doxorubicin (Dox) is one of the most potent broad-spectrum antitumor anthracycline antibiotics, its use is limited by the development of life-threatening cardiomyopathy. Doxorubicin generates free radicals and induces oxidative stress associated with cellular injury. Further, it has been shown that free radicals are involved in doxorubicin-induced toxicity. The goal of this study is to investigated the cardio-protective effects of caffeic acid on doxorubicin induced cardiotoxicity. The rats were randomized into three equal groups, sham group without treatment, doxorubicin treated group at a dose 3mg/kg IP every other two days and group treated with doxorubicin plus caffeic acid 40mg/day. Two weeks later LV function measurment were performed and blood samples were collected from the heart to measurment plasma levels of cardiac Troponin-I (cTn-I), oxidative stress parameter malondialdehyde (MDA) and high a sensitive c-reactive protein (hs-CRP). The hearts were excised for cardiac tissue cytokines (TNF-α, IL-1β, IL-10) measurement and microscopic examination. Rats in the Dox+caffeic acid group had improved LV function, reduced cytokine expression, decreased myocardial marker injury (cTn-I) and less MDA, hs-CRP levels in comparison with the Dox group. Pathological finding appeared nearly normal in the Dox+caffeic acid without fibrosis. The results of the present study reveal that caffeic acid has a promising cardioprotective effect against doxorubicin-induced cardiotoxicity.

Keywords: Doxorubicin; Cardiotoxicity; Inflammatory response; Left ventricular function

Copyright © 2020 by The American Society for BioMedicine and BM-Publisher, Inc.

Article citationReferencesFull-Text/PDFBecome reviewer
The citation data is computed by the following citation measuring services:

Cited by (CrossRef)
Google Scholar

  1. Hitchcock-Bryan S, Gelber RD, Cassady JR, Sallan SE. The impact of induction anthracycline on long-term failure-free survival in childhood acute lymphoblastic leukemia. Med Pediatr Oncol 1986; 4:211–5.
  2. Bonadonna G, Monfardini S. Cardiac toxicity of daunorubicin. Lancet 1969; 1: 837.
  3. Quiles JL, Huertas JR, Battino M, Mataix J, Ramerez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology 2002;180:7995.
  4. Jain D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J Nucl Cardiol 2000;7:53-62.
  5. Corna G, Santambrogio P, Minotti G, Cairo G. Doxorubicin paradoxicallyprotects cardiomyocytes against iron-mediatedtoxicity: role of reactive oxygen species and ferritin. J Biol Chem 2004; 279:13738-13745.
  6. Bodley A, Liu LF, Israel M, et al. DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989;49:5969-5978.
  7. to H, Miller SC, Billingham ME, et al. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle in vivo and in vitro. Proc. Natl. Acad. Sci 1990;87:4275-4279.
  8. Yoshikawa T, Handa S, Suzuki M, Nagami K. Abnormalities in sympathoneuronal regulation are localized to failing myocardium in rabbit heart. J. Am. Coll. Cardiol 1994;24:210-215.
  9. Minotti G, Cavaliere, AF, Mordente A. et al. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicology. Journal of Clinical Investigation 1995;95:1595-1605.
  10. Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ. Inhibition of cyclooxygenase-2 aggrevates doxorubicin mediated cardiac injury in vivo. J. Clin. Invest 2001;108(4):585-590.
  11. Pacher P, Liqudet L, Bai P, et al.  Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin induced cardiac dysfunction. Circulation 2003;107:896-904.
  12. Santos RV, Batista ML, Caperuto EC, Costa Rosa LF. Chronic supplementation of creatine and vitamins C and E increases survival and improves biochemical parameters after doxorubicin treatment in rats.Clin. Exp. Pharmacol 2007;34(12):1294-1299.
  13. Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol 1998;25:10-4.
  14. Arola OJ, Saraste A, Pulkki K, et al. Acute doxorubicin cardiotoxicityinvolves cardiomyocite apoptosis. Cancer Res 2000;60:1789-1792.
  15. Olson RD, Mushlin PS. Doxorubicin cardiotoxicity analysis of prevailing hypotheses. FASEB J 1990;4:3076-3086.
  16. Goormaghtigh E, Rysschaert JM. Anthracycline – glycoside membrane interactions. Biochim. Biophys 1984;779:271-288.
  17. Bien S, Riad A, Ritter CA, et al. The endothelin receptor blocker bosen-tan inhibits doxorubicin-induced cardiomyo-pathy. Cancer Res 2007;67;0428-10435.
  18. Yousif NG, Al-Amran FG. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice. BMC Cardiovasc Disord 2011;11: 62.
  19. Sauter K, Wood LJ, Wong J, Iordanov M. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome. Cancer Biol Ther 2011;11(12):1008–1016.
  20. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765.
  21. Suter TM, Meier B. Detection of anthracycline-induced cardiotoxicity: is there light at the end of the tunne. Annals of Oncology 2002;13:647–649.
  22. Adamcova M, Martin M, Tomas T, et al. Troponin as a marker of myocardiac damage in drug-induced cardiotoxicity. Expert Opin. Drug Saf 2005;4(3):457-472.
  23. Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek  2004;57(9-10):453-5.
  24. Black S, Kushner I, Samols D. C-reactive protein. The Journal of Biological Chemistry 2004;279(47):48487–48490.
  25. Ratnasamy C, Kinnamon D, Lipshultz C, et al. Associations between neurohormonal and inflammatory activation and heart failure in children. Progress in Pediatric Cardiology 2007;24:81–82.
  26. Singh SK, Suresh MV, Voleti B, Agrawal G. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 2008;40(2):110–120.
  27. Rampart M, Beetens JR, Bult H. Complement-dependent stimulation of prostacyclin biosynthesis: inhibition by rosmarinic acid. Biochemical Pharmacology 1986;35(8):1397–1400.
  28. Yasuko K, Tomohiro N, Sei-Itsu M, Ai-Na L, Yasuo F, Takashi T. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochimica et Biophysica Acta 1984;792(1):92–97.
  29. Tanaka T, Kojima T, Kawamori T, et al. Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis 1993;14(7):1321–1325.
  30. Fesen MR, Kohn KW, Leteurtre F, Pommier Y. Inhibitors of human immunodeficiency virus integrase. Proceedings of the National Academy of Sciences of the United States of America 1993;90(6):2399–2403.
  31. Deraedt R, Jouquey S, Delevallee F, Flahaut M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. European Journal of Pharmacology 1980;61(1):17–2.
  32. Dennis f.kohn, Sallyk.wixon, Williamj.white,etal. anesthesia and analgesia in laboratory animals. Accadmic press 1997.
  33. Zhang M, Xu YJ, Saini HK, Turan B, Liu PP, Dhalla NS. Pentoxifylline attenuates cardiac dysfunction and reduces TNF-α level in ischemic-reperfused heart, Am J Physiol Heart Circ Physiol  2005;289:H832–H839.
  34. Bancroft JD. Theory and Practice of Histological Techniques. New York 2002; p129.
  35. Todorova VK, Kaufmann Y, Hennings L, Klimberg VS. Oral glutamine protects against acute doxorubicin-induced cardiotoxicity of tumor-bearing rats. J Nutr 2010;140(1):44-8.
  36. Wen C, Li M, Whitworth JA.Validation of transonic small animal flowmeter for measurement of cardiac output and regional blood flow in the rat. J Cardiovasc Pharmacol 1996;27(4):482-6.
  37. Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000;294:396–401.
  38. Chaiswing L, Cole MP, St Clair DK, et al. Oxidative damage precedes nitrative damage in Adriamycin-induced cardiac mitochondrial injury. Toxicol Pathol 2004;32:536–547.
  39. Andreadou I, Sigala F, Iliodromitis EK, et al. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol 2007;42:549–558.
  40. Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 2002;234–235:119–124.
  41. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007;49:330–352.
  42. Mariappan N, Namakkal R, Haque M, Sriramula V, Francis J. TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempo. Am J Physiol Heart Circ Physiol 2007; 293: H2726– H2737.
  43. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol 2004;286:H2264–H2271.
  44. Kawano S, Kubota T, Monden Y, et al. Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res 2005;67:689–698.
  45. Trescher K, Bernecker O, Fellner B, et al. Inflammation and post infarct remodeling: overexpression of IkappaB prevents ventricular dilation via increasing TIMP levels. Cardiovasc Res 2006;69:746–754.
  46. Matook A, Taye, Heeba g, EI-Moselhy m. Potential protective role of quercetin against chronic doxorubicin induced cardiotoxicity in rats. EL-mina med.bull 2012;23(2).
  47. Mukhergee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK. Protection against acute adryamicin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-a expression. BMC Pharmacol 2003;3:16–25.
  48. Zhu J, Zhang J, Xiang D, et al. Recombinant human interleukin-1 receptor antagonist protects mice against acute doxorubicin-induced cardiotoxicity. Eur J Pharmacol 2010;643:247–253.
  49. Sultani M, Stringer A, Bowen J, Gibson R. Anti-Inflammatory Cytokines: Important Immunoregulatory Factors Contributing to Chemotherapy-Induced Gastrointestinal Mucositis. Chemother Res Pract 2012.
  50. Nugroho AE, Hermawan A, Nastiti K, et al. Immunomodulatory Effects of Hexane Insoluble Fraction of Ficus septica Burm. F. in Doxorubicin-treated Rats. Asian Pacific Journal of Cancer Prevention 2012;13:5785.
  51. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhoodacute lymphoblastic leukemia. J Clin Oncol 2005;23:2629–36.
  52. Alkreathy H, Damanhouri ZA, Ahmed N, et al. Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 2010;48(3):951-6.
  53. Sedky L, Hamada E, Sehim H, et al. the value of troponin measurement in assessment of anthracycline induced cardiotoxicity in breast cancer patient.  msc. tournal of the Egyptian nat. cancer inst 2000;12(1):35-40.
  54. Kilickap S, Barista I, Akgul E, et al. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol 2005;16(5):798-804.
  55. Zhih-Cherng Chen, Li-Jen Chen, Juei-Tang Cheng. Doxorubicin-induced cardiac toxicity is mediated by lowering of peroxisome proliferator-activated receptor δ (PPARδ) expression in rats. PPAR Research 2013;8.
  56. Chan K, Xiang P, Zhou L, et al. Thrombopoietin protects against doxorubicin-induced cardiomyopathy, improves cardiac function, and reversely alters specific signalling networks. Eur J Heart Fail 2011;13(4):366-76.
  57. Van der Vijgh H, Vermorken JB. Clinical and preclinical modulation of chemotherapy-induced toxicity in patients with cancer. Drugs 1999;57:133-156.
  58. Schvarzbeyn J, Huleihel M. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFΚB activation by HTLV-1 Tax. Antiviral Res 2011;90:108-115.
  59. Ansorge S, Reinhold D, Lendeckel U. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-β1 production of human immune cells. Z Naturforsch 2003;58c:580-589.
  60. an J, Ma Z, Han L,  et al. Caffeic acid phenethyl ester possesses potent cardioprotective effects in a rabbit model of acute myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2265-71.
  61. Motawi TK, Darwish HA, Abd El Tawab AM. Effects of caffeic acid phenethyl ester on endotoxin-induced cardiac stress in rats: a possible mechanism of protection. Biochem Mol Toxicol 2011;25(2):84-94.
  62. Kumaran K, Prince S. Protective effect of caffeic acid on cardiac markers and lipid peroxide metabolism in cardiotoxic rats: an in vivo and in vitro study. Metabolism 2010;59(8):1172-80.
  63. Suleyman O, Mehmet A, Zafer Y, et al. Effects of caffeic acid phenethyl ester on isoproterenol-induced myocardial infarction in rats. Anadolu Kardiyol Derg 2010;10(4):298-302.
  64. Fadillioglu E, Oztas E, Erdogan H, et al. Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 2004;24(1):47-52.


READ THE FULL ARTICLE

For any technique error please contact us and will be response to sending purchase article by email.

Who Can Become a Reviewer?
Any expert in the article's research field can become a reviewer with American Journal of BioMedicine. Editors might ask you to look at a specific aspect of an article.

Find out more

Research Article
DOI: http://dx.doi.org/10.18081/ajbm/2333-5106-013-12/23-27
American Journal of BioMedicine Volume 2, Issue 3, pages 14-26
Received 02 September 2013; accepted 17 January 2014; published January 28, 2014

How to cite this article
Mohammad BI, Aharis NA, Yousif MG, Alkefae Z, Hadi N. Effects of caffeic acid on doxorubicin induced cardiotoxicity in rats. American Journal of BioMedicine 2014;2(1):14-26.

Case report outline
1. Abstract
2. Keywords
3. Introduction
4. Methods
5. Results
6. Discussion
7. References

Explore PlumX Metrics