Role of overexpression mTORC1 in diabetes mellitus type 2: activation PI3K/Akt pathway




Research Article

American Journal of BioMedicine
Volume 11, Issue 1, 04 January 2023, Pages 1-9 | http://dx.doi.org/10.18081/2333-5106/2023.11/1

Martín Pérez-Vázquez 1, Psarova O. V 1, 2, Palero S *1

Received  10 September 2022   Revised  14 November 2022   Accepted  03 December 2022   Published  04 January 2023


 

Abstract

The objective of this study is investigating the role of excessive activation PI3K/Akt/mTORC1 in diabetes mellitus type 2. It’s known that the PI3K/Akt/mTORC1 pathway is involved in the pathogenesis of cancer. Study design was carried out in accordance with the guidelines of the Helsinki Declaration that included normal patients as control (n = 15), second group included patients with diabetes mellitus type 2 (n = 22) while, third group included patients with malignancy positive mTORC1 (n = 22). 81 women were examined and enrolled in this study with age from 40 to 75-year-old. Diabetes mellitus type 2 compensation was assessed by determining the level of HbA1c by the method of ion-exchange chromatography, using the BIO-RAD D-10 analyzer, PRAS40 was determined in units depending on the amount of protein in the blood cell lysates.

Keywords: Diabetes mellitus type 2; mTORC1; PI3K/Akt

Copyright © 2023 Palero S, et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to citeReferencesDownload citationStatistics
The citation data is computed by the following citation measuring services:

RIS
Hidden content
EndNote
Hidden content
Mendeley
Hidden content
BibTeX
Hidden content
APA
Hidden content
MLA
Hidden content
HARVARD
Hidden content
VANCOUVER
Hidden content

1. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20:1183-1197.
https://doi.org/10.2337/diacare.20.7.1183
2. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med 2007; 120:720-727.
https://doi.org/10.1016/j.amjmed.2007.03.022
3. Sato KK, Hayashi T, Harita N, Yoneda T, Nakamura Y, Endo G, Kambe H. Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 2009; 32:644-646.
https://doi.org/10.2337/dc08-1631
4. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Diabetes Prevention Program Research Group Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346:393-403.
https://doi.org/10.1056/NEJMoa012512
5. Kasuga M. Insulin resistance and pancreatic β-cell failure. J Clin Invest 2006; 116:1756- 1760.
https://doi.org/10.1172/JCI29189
6. Tuttle RL, Gill NS, Pugh W, et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat Med 2001; 7:1133- 1137.
https://doi.org/10.1038/nm1001-1133
7. Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA. Islet β-cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 2001; 108:1631- 1638.
https://doi.org/10.1172/JCI200113785
8. Stiles BL, Kuralwalla-Martinez C, Guo W, et al. Selective deletion of Pten in pancreatic β-cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 2006; 26:2772- 2781.
https://doi.org/10.1128/MCB.26.7.2772-2781.2006
9. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124:471- 484.
https://doi.org/10.1016/j.cell.2006.01.016
10. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17:596- 603.
https://doi.org/10.1016/j.ceb.2005.09.009
11. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177- 189.
https://doi.org/10.1016/S0092-8674(02)00833-4
12. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signaling network. Nat Cell Biol 2003; 5:566- 571.
https://doi.org/10.1038/ncb996
13. Garami A, Zwartkruis FJT, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11:1457- 1466.
https://doi.org/10.1016/S1097-2765(03)00220-X
14. Yeung SC. PIM1 (pim-1 oncogene). Atlas Genet Cytogenet Oncol Haematol 2013; 17(10): 704-8.
https://doi.org/10.4267/2042/51537
15. Long X, Ortiz-Vega S, Lin Y, Avruch J: Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 2005; 280: 23433- 23436.
https://doi.org/10.1074/jbc.C500169200
16. Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in β-cells. J Biol Chem 2005; 280:2282- 2293.
https://doi.org/10.1074/jbc.M412179200
17. Wang H, Zhang Q, Wen Q, et al. Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Сell Signal 2012; 24(1): 17-24.
https://doi.org/10.1016/j.cellsig.2011.08.010
18. Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep. 2006; 6:479-83.
https://doi.org/10.1007/s11892-006-0083-y
19. De Oliveira CE, Oda JM, Losi Guembarovski R, et al. CC chemokine receptor 5: the interface of host immunity and cancer. Dis Markers. 2014; 2014: 126954.
https://doi.org/10.1155/2014/126954
20. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. [Trial watch: Prognostic and predictive value of the immune infiltrate in cancer]. Oncoimmunology. 2012; 1(8):1323-1343.
https://doi.org/10.4161/onci.22009
21. Dituri F, Mazzocca A, Giannelli G, Antonaci S. PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors]. Clin Dev Immunol. 2011; 2011:947858.
https://doi.org/10.1155/2011/947858
22. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577-90.
https://doi.org/10.1016/S0092-8674(03)00929-2
23. Lu Q, Zuo WZ, Ji XJ, et al. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomedicine. 2015; 22:1071-8.
https://doi.org/10.1016/j.phymed.2015.08.010
24. Yang Y, Han Y, Zuo Y, et al. Hedgehog signaling pathway for advanced ovarian cancer: cross-talk mTOR/AKT kinase. American Journal of BioMedicine 2016; 4(11):505-512.
https://doi.org/10.18081/2333-5106/016-11/505-512
25. Madhunapantula SV, Mosca PJ, Robertson GP. The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther. 2011; 12(12):1032‐1049.
https://doi.org/10.4161/cbt.12.12.18442
26. Yoon MS. [The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling]. Nutrients. 2017; 9(11):1176.
https://doi.org/10.3390/nu9111176
27. Zhang Z, Li BY, Li XL, et al. Proteomic analysis of kidney and protective effects of grape seed procyanidin B2 in db/db mice indicate MFG-E8 as a key molecule in the development of diabetic nephropathy. Biochim Biophys Acta. 2013; 1832:805-16.
https://doi.org/10.1016/j.bbadis.2013.02.022

1. Access through OpenAthens

2. PDF     XML

For any technique error please contact us.

 

      PDF           XML

How to cite this article
Martín Pérez-Vázquez, Psarova O. V, Palero S. Role of overexpression mTORC1 in diabetes mellitus type 2: activation PI3K/Akt pathway. American Journal of BioMedicine. 2023; 11(1):1-9.

More Citation Formats

RIS
TY – JOUR
TI – Role of overexpression mTORC1 in diabetes mellitus type 2: activation
PI3K/Akt pathway
T2 – Am. J. Biomed.
VL – 11
IS – 1
SP – 1-9
PY – 2023
DA – 2023/1/4
PB – BM-Publisher American Journal of BioMedicine
AB – The objective of this study is investigating the role of excessive
activation PI3K/Akt/mTORC1 in diabetes mellitus type 2. It’s known that
the PI3K/Akt/mTORC1 pathway is involved in the pathogenesis of cancer.
Study design was carried out in accordance with the guidelines of the
Helsinki Declaration that included normal patients as control (n = 15),
second group included patients with diabetes mellitus type 2 (n = 22)
while, third group included patients with malignancy positive mTORC1 (n =
22). 81 women were examined and enrolled in this study with age from 40 to
75-year-old. Diabetes mellitus type 2 compensation was assessed by
determining the level of HbA1c by the method of ion-exchange
chromatography, using the BIO-RAD D-10 analyzer, PRAS40 was determined in
units depending on the amount of protein in the blood cell lysates.
SN – 2333-5106
DO – 10.18081/2333-5106/2023.11/1
UR – http://dx.doi.org/10.18081/2333-5106/2023.11/1
ER –
Bib Tex
@ARTICLE{noauthor_2023-vh,
title = “Role of overexpression {mTORC1} in diabetes mellitus type 2:
activation {PI3K/Akt} pathway”,
abstract = “The objective of this study is investigating the role of
excessive activation PI3K/Akt/mTORC1 in diabetes mellitus type
2. It’s known that the PI3K/Akt/mTORC1 pathway is involved in
the pathogenesis of cancer. Study design was carried out in
accordance with the guidelines of the Helsinki Declaration that
included normal patients as control (n = 15), second group
included patients with diabetes mellitus type 2 (n = 22) while,
third group included patients with malignancy positive mTORC1 (n
= 22). 81 women were examined and enrolled in this study with
age from 40 to 75-year-old. Diabetes mellitus type 2
compensation was assessed by determining the level of HbA1c by
the method of ion-exchange chromatography, using the BIO-RAD
D-10 analyzer, PRAS40 was determined in units depending on the
amount of protein in the blood cell lysates.”,
journal = “Am. J. Biomed.”,
publisher = “BM-Publisher American Journal of BioMedicine”,
volume = 11,
number = 1,
pages = “1–9”,
month = jan,
year = 2023
}
APA
Role of overexpression mTORC1 in diabetes mellitus type 2: activation PI3K/Akt pathway. (2023). American Journal of Biomedicine11(1), 1–9. doi:10.18081/2333-5106/2023.11/1
MLA
‘Role of Overexpression MTORC1 in Diabetes Mellitus Type 2: Activation PI3K/Akt Pathway’. American Journal of Biomedicine, vol. 11, no. 1, BM-Publisher American Journal of BioMedicine, Jan. 2023, pp. 1–9, https://doi.org10.18081/2333-5106/2023.11/1.
HARVARD
‘Role of overexpression mTORC1 in diabetes mellitus type 2: activation PI3K/Akt pathway’ (2023) American journal of biomedicine. BM-Publisher American Journal of BioMedicine, 11(1), pp. 1–9. doi: 10.18081/2333-5106/2023.11/1.
Chicago
‘Role of Overexpression MTORC1 in Diabetes Mellitus Type 2: Activation PI3K/Akt Pathway’. American Journal of Biomedicine 11, no. 1 (4 January 2023): 1–9. https://doi.org/10.18081/2333-5106/2023.11/1.
Spoiler title
‘Martín Pérez-Vázquez, Psarova O. V, Palero S. Role of overexpression mTORC1 in diabetes mellitus type 2: activation PI3K/Akt pathway. Am J Biomed [Internet]. 2023;11(1):1–9. Available from: http://dx.doi.org/10.18081/2333-5106/2023.11/1.

Article metric

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

All articles published in American Journal of BioMedicine  are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.