Pathological mechanisms of chemokines involved in reperfusion injury following myocardial ischemia

Review Article

American Journal of BioMedicine
Volume 10, Issue 4, November 20 2022, Pages 159-171 |

Dmitry V Movsesyan 1, Sheraz Tadevosyan, Lorky Hambardzum *

Received  May 30 2022   Revised  August 29 2022   Accepted  October 22 2022   Published  November 20 2022



Myocardial ischemia is the most frequent form of cardiovascular disease with high morbidity and mortality, for which timely restoration of blood flow to the ischemic myocardium (reperfusion) is indispensable for a better patient outcome. After ischemic/reperfusion injury, increased vascularization or increased vascular protection may be critical to mediate functional recovery, with endothelial cells being the primary effector cell type responsible for neo-vascularization and angiogenesis. Chemokines are small proinflammatory proteins that act as both chemoattractant and activators of leukocytes. Chemokines are considered as a subset of the cytokine family responsible for cell migration, activation, and tissue injury. This reviews analysis the pathological mechanisms of myocardial ischemia/reperfusion (I/R) and identify circulating inflammatory chemokines of significance involved in reperfusion injury and the interventions for different pathways and targets, with evidence that chemokines antibody could reduce cardiac inflammation and protect the heart from I/R injury via inhibition of the activity of NF-κB, ICAM-1 expression, and MPO activities in different I/R model.

Keywords: Myocardial ischemia; cardiovascular disease; Chemokines; Ischemia/reperfusion (I/R)

Copyright © 2022 Lorky Hambardzum, et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to citeReferencesDownload citationStatistics
The citation data is computed by the following citation measuring services:

Hidden content
Hidden content
Hidden content
Hidden content
Hidden content
Hidden content
Hidden content
Hidden content

  1. Tanguy S, Rakotovao A, Jouan MG, Ghezzi C, de Leiris J, Boucher F. Dietary selenium intake influences Cx43 dephosphorylation, TNF-α expression and cardiac remodeling after reperfused infarction. Molecular Nutrition & Food Research 2011; 55(4):522-529.
  2. Sadoshima J. The role of autophagy during ischemia/reperfusion. Autophagy 2008; 4(4):402-403.
  3. Yu Y, Xing N, Xu X, Zhu Y, Wang S, Sun G. Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. Phytomedicine 2019; 52:178-186.
  4. Dobaczewski M, Gonzalez‐Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 2010; 48:504-11.
  5. Jo M, Jung ST. Engineering therapeutic antibodies targeting G‐protein‐coupled receptors. Exp Mol Med 2016; 48:e207.
  6. Chen C, Lu W, Wu G, Lv L, Chen W, Huang L. Cardioprotective effects of combined therapy with diltiazem and superoxide dismutase on myocardial ischemia-reperfusion injury in rats. Life Sciences 2017; 183:50-59.
  7. Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66(1):1-79.
  8. Carrero JJ, Stenvinkel P. Persistent Inflammation as a Catalyst for Other Risk Factors in Chronic Kidney Disease: A Hypothesis Proposal. Clin J Am Soc Nephrol 2009; 4:S49-S55.
  9. Mansell H, Rosaasen N, Dean J, Shoker A. Evidence of enhanced systemic inflammation in stable kidney transplant recipients with low Framingham risk scores. Clin Transplant 2013; 27:E391-E399.
  10. Ribichini F, Wijns W. Acute myocardial infarction: reperfusion treatment. Heart 2002; 88(3):298-305.
  11. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354(6):610-621.
  12. Braunersreuther V, Pellieux C, Pelli G, et al. Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. J Mol Cell Cardiol 2010; 48(4):789-798.
  13. De Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado Â. CXCl8 (Interleukin-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol 2013; 190:4349-4359.
  14. van Wanrooij EJ, Happe H, Hauer AD, de Vos P, Imanishi T, Fujiwara H, van Berkel TJ, Kuiper J. HIV entry inhibitor TAK-779 attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2005; 25(12):2642-2647.
  15. Schober A, Manka D, von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber C. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106(12):1523-1529.
  16. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol 2015; 15:692-704.
  17. Günther C, Wozel G, Meurer M, Pfeiffer C. Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid. Clin Exp Immunol 2011; 166:145-153.
  18. Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 2013; 210:1283-99.
  19. Blanchet X, Langer M, Weber C, Koenen RR, von Hundelshausen P. Touch of chemokines. Front Immunol 2012; 3:175.
  20. Proost P, Struyf S, Loos T, Gouwy M, Schutyser E, Conings R et al Coexpression and interaction of CXCL10 and CD26 in mesenchymal cells by synergising inflammatory cytokines: CXCL8 and CXCL10 are discriminative markers for autoimmune arthropathies. Arthritis Res Ther 2006; 8:R107.
  21. Starr AE, Dufour A, Maier J, Overall CM. Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16. J Biol Chem 2012; 287(8):5848-5860.
  22. Thompson S, Martinez‐Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS et al Regulation of chemokine function: the roles of GAG‐binding and post‐translational nitration. Int J Mol Sci 2017; 18:E1692.
  23. Pamies D, Hartung T. 21st century cell culture for 21st century toxicology. Chem Res Toxicol 2017; 30:43-52.
  24. Ali S, Robertson H, Wain JH, Isaacs JD, Malik G, Kirby JA. A non‐glycosaminoglycan‐binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein‐3) antagonizes chemokine‐mediated inflammation. J Immunol 2005; 175:1257-66.
  25. Tan YS, Lane DP, Verma CS. Stapled peptide design: principles and roles of computation. Drug Discov Today 2016; 21:1642-53.
  26. Gerlza T, Hecher B, Jeremic D, Fuchs T, Gschwandtner M, Falsone A et al A combinatorial approach to biophysically characterise chemokine‐glycan binding affinities for drug development. Molecules 2014; 19:10618-34.
  27. Carter NM, Ali S, Kirby JA. Endothelial inflammation: the role of differential expression of N‐deacetylase/N‐sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate. J Cell Sci 2003; 116:3591-600.
  28. Saesen E, Sarrazin S, Laguri C, Sadir R, Maurin D, Thomas A et al Insights into the mechanism by which interferon‐γ basic amino acid clusters mediate protein binding to heparan sulfate. J Am Chem Soc 2013; 135:9384-90.
  29. Lear S, Cobb SL. Pep‐ a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J Comput Aided Mol Des 2016; 30:271-7.
  30. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, Hoogewerf AJ et al Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 1999; 38:12959-68.
  31. Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol 2015; 11:88-101.
  32. Wijtmans M, Scholten D, Mooij W, Smit MJ, de Esch IJP, de Graaf C, et al. Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists, and Rob Leurs. Top Med Chem 2015; 14:119-186.
  33. Cugini D, Azzollini N, Gagliardini E, Cassis P, Bertini R, Colotta F et al Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion. Kidney Int 2005; 67:1753-61.
  34. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G et al Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci USA 2004; 101:11791-6.
  35. Bedke J, Nelson PJ, Kiss E, Muenchmeier N, Rek A, Behnes CL et al A novel CXCL8 protein‐based antagonist in acute experimental renal allograft damage. Mol Immunol 2010; 47:1047-57.
  36. Anders HJ, Ninichuk V, Schlöndorff D. Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int. 2006;69(1):29-32.
  37. Johnson Z, Proudfoot AE, Handel TM. Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 2005; 16:625-36.
  38. Yousuf S, Sayeed I, Atif F, Tang H, Wang J, Stein DG. Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats. J Cereb Blood Flow Metab 2014; 34:297-306.
  39. Won S, Lee JH, Wali B, Stein DG, Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab 2014; 34:72-80.
  40. Thom THN, Rosamond W, Howard VJ, et al. heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006; 113:e85-e151.

1. Access through OpenAthens

2. PDF     XML

For any technique error please contact us.


      PDF           XML

How to cite this article
Movsesyan DV, Tadevosyan S, Hambardzum L. Pathological mechanisms of chemokines involved in reperfusion injury following myocardial ischemia. American Journal of BioMedicine. 2022; 10(4):159-171

Article metric