Human amniotic membrane-derived stem cells down-regulation of proinflammatory cytokines in CDK of the experimental model






Research Article

American Journal of BioMedicine
Volume 11, Issue 2,  Pages 76-84 | http://dx.doi.org/10.18081/2333-5106/2023.11/76

Bhat B 1, Singh N 1, Udwadia BS 1, Guda EN 1, 2 *  

Received  27 January  2023   Revised  25 March 2023   Accepted  21 April 2023   Published  18 May 2023


Abstract

Chronic kidney disease (CKD) is viewed as quite possibly one of the most well-known renal problems that is treated with dialysis or renal transplant. Amniotic membrane stem cell (AMSC) injections may be able to improve kidney function, according to recent research. As a result, the current study looked into how intra-kidney injection of human amniotic membrane-derived stem cells (hAMCs) affected inflammatory cytokines like IL-10 and IL-17 in mice using the CKD model. Twenty male wild mice were arranged into four gatherings: control, CKD, culture medium infusion bunch, and hAMCs infusion bunch. Following two months, blood tests were taken from the creatures, and the articulation levels of interleukins 10 and 17 were estimated by the ELISA method. The outcomes showed that infusion of hAMCs into male mice with CKD caused down-guideline of IL-17 fiery cytokine and over-articulation of IL-10 calming cytokine. In light of the aftereffects of this review and past ones, we presumed that hAMCs could be viewed as one of the up-and-comers in later examinations on decreasing irritation in CKD treatment by changing a few provocative cytokines.

Keywords: CKD; Proinflammatory cytokines; hAMCs; Amniotic membrane stem cell

Copyright: © 2023 Guda et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cited by other articlesReferencesDownload this articleStatistics
The citation data is computed by the following citation measuring services:

1. Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65(3):1091-1133.
https://doi.org/10.1124/pr.112.007393
2. Dragin U, Kreft ME. Amniotic membrane in tissue engineering and regenerative medicine. Zdravn Vestn 2010; 79(10):8707-8715.
3. Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant 2014; 4(2):111-121.
https://doi.org/10.5500/wjt.v4.i2.111
4. Rocha SCM, Baptista CJM. Biochemical properties of amniotic membrane In: Mamede AC, Botelho MF, editors. Amniotic membrane. Netherlands: Springer; 2015. p. 19-40.
https://doi.org/10.1007/978-94-017-9975-1_2
5. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007; 77(3):577-588.
https://doi.org/10.1095/biolreprod.106.055244
6. Nogami M, Tsuno H, Koike C, Okabe M, Yoshida T, Seki S, Matsui Y, Kimura T, Nikaido T. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 2012; 93(12):1221-1228.
https://doi.org/10.1097/TP.0b013e3182529b76
7. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 2004; 29(3):73-84.
https://doi.org/10.1247/csf.29.73
8. Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials 2011; 32(12):3189-3209.
https://doi.org/10.1016/j.biomaterials.2010.12.032
9. National Kidney Foundation. K-DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39(2 Suppl 1):S1-266.
10. KDIGO. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3(1):1-150.
11. Kronsteiner B, Peterbauer-Scherb A, Grillari-Voglauer R, et al. Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cell Immunol 2011; 267(1):30-38.
https://doi.org/10.1016/j.cellimm.2010.11.001
12. Koob TJ, Lim JJ, Massee M, Zabek N, Denoziere G. Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 102(6):1353-1362.
https://doi.org/10.1002/jbm.b.33141
13. Kang NH, Hwang KA, Kim SU, Kim YB, Hyun SH, Jeung EB, Choi KC. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 2012; 19(8):517-522.
https://doi.org/10.1038/cgt.2012.30
14. Pereira BJ. Optimization of pre-ESRD care: the key to improved dialysis outcomes. Kidney Int 2000; 57(1):351-65.
https://doi.org/10.1046/j.1523-1755.2000.00840.x
15. El-Bakaa AS, Al-Amranm FG, Nöth U. Role of stem cells transplantation for patients with spinal cord injury: systematic meta-analysis. Journal of Population Therapeutics and Clinical Pharmacology 2023; 30(7):211-221.
https://doi.org/10.47750/jptcp.2023.30.07.026
16. Moyer VA. U.S. Preventive Services Task Force. Screening for chronic kidney disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2012; 157(8):567-70.
https://doi.org/10.7326/0003-4819-157-8-201210160-00533
17. Little MH, Kairath P. Regenerative medicine in kidney disease. Kidney Int 2016; 90(2):289-299.
https://doi.org/10.1016/j.kint.2016.03.030
18. Imig JD, Ryan MJ. Immune and inflammatory role in renal disease. Compr Physiol 2013; 3(2):957-976.
https://doi.org/10.1002/cphy.c120028
19. Kim JH, Song YS. Current status of stem cell therapy in urology. Korean J Urol 2015; 56(6):409-411.
https://doi.org/10.4111/kju.2015.56.6.409
20. Vassalotti JA, Centor R, Turner BJ, Greer RC, Choi M, Sequist TD. National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Practical approach to detection and management of chronic kidney disease for the primary care clinician. Am J Med 2016; 129(2):153-62.
https://doi.org/10.1016/j.amjmed.2015.08.025
21. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298(17):2038-47.
https://doi.org/10.1001/jama.298.17.2038
22. Lugon JR. Doença renal crônica no Brasil: um problema de saúde pública. J Bras Nefrol 2009; 31(supl 1):2-5.
23. Marinho AWGB, Penha AP, Silva MT, Galvão TF. Prevalência de doença renal crônica em adultos no Brasil: revisão sistemática da literatura. Cad Saúde Colet 2017; 25(3):379-88.
https://doi.org/10.1590/1414-462x201700030134
24. Thomé FS, Sesso RC, Lopes AA, Lugon JR, Martins CT. Brazilian chronic dialysis survey 2017. J Bras Nefrol.2019; 41(2):208-14.
https://doi.org/10.1590/2175-8239-jbn-2018-0178
25. Thomas B, Matsushita K, Abate KH, Al-Aly Z, Ärnlöv J, Asayama K, et al. Global Burden of Disease 2013 GFR Collaborators; CKD Prognosis Consortium; Global Burden of Disease Genitourinary Expert Group. Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol 2017; 28(7):2167-79.
https://doi.org/10.1681/ASN.2016050562
26. Vassalotti JA, Centor R, Turner BJ, Greer RC, Choi M, Sequist TD. National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Practical approach to detection and management of chronic kidney disease for the primary care clinician. Am J Med. 2016;129(2):153-62.
https://doi.org/10.1016/j.amjmed.2015.08.025
27. Al Kilabi AEK, Hatem KK, Al-Albaseesee HH, et al. Autologous hematopoietic bone marrow and concentrated growth factor transplantation combined with core decompression in patients with avascular necrosis of the femoral head. J Med Life 2023; 16(1):76-90.
https://doi.org/10.25122/jml-2022-0342
28. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298(17):2038-47.
https://doi.org/10.1001/jama.298.17.2038
29. Lugon JR. Doença renal crônica no Brasil: um problema de saúde pública. J Bras Nefrol 2009; 31(supl 1):2-5.
30. Marinho AWGB, Penha AP, Silva MT, Galvão TF. Prevalência de doença renal crônica em adultos no Brasil: revisão sistemática da literatura. Cad Saúde Colet 2017; 25(3):379-88.
https://doi.org/10.1590/1414-462x201700030134
31. Thomé FS, Sesso RC, Lopes AA, Lugon JR, Martins CT. Brazilian chronic dialysis survey 2017. J Bras Nefrol 2019; 41(2):208-14.
https://doi.org/10.1590/2175-8239-jbn-2018-0178
32. Thomas B, Matsushita K, Abate KH, et al. Global Burden of Disease 2013 GFR Collaborators; CKD Prognosis Consortium; Global Burden of Disease Genitourinary Expert Group. Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol 2017; 28(7):2167-79.
https://doi.org/10.1681/ASN.2016050562

1. Access through OpenAthens

2. PDF     XML

For any technique error please contact us.

 

      PDF           XML

Bhat B, Singh N, Udwadia BS, Guda EN. Human amniotic membrane-derived stem cells down-regulation of proinflammatory cytokines in CDK of the experimental model. American Journal of BioMedicine 2023; 11(2):76-84.

APA
Chandra, S., and Vijayakumar, V. (2023). Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 11(1), 10-21.doi: 10.18081/2333-5106/2023.11/10
MLA
Sambit Chandra; Sujeet D. Vijayakumar. “Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors”. American Journal of BioMedicine, 11, 1, 2023, 10-21. doi: 10.18081/2333-5106/2023.11/10
HARVARD
Chandra, S., Vijayakumar, V. (2023). Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 11(1), PP. 10-21.doi: 10.18081/2333-5106/2023.11/10
VANCOUVER
Chandra, S., Vijayakumar, V. Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 2023; 11(1):10-21.doi: 10.18081/2333-5106/2023.11/10

 
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

All articles published in American Journal of BioMedicine  are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.