Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis



Research Article                

American Journal of BioMedicine                  

Volume 12, Issue 2, 2024, Pages 43-51    10.18081/2333-5106/2024.12/43

Fathur Budiyono 1 , Achmad Firman ,Ray Setiati, Erika Rah *

Received 18 November 2023; revised 11 March 2024; accepted 19 March 2024; published 11 April 2024


Abstract

Acute lymphoblastic leukemia (ALL) is most common in children, especially those aged 1–4 years old, and the second most common acute leukemia in adults. The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes recent clinical, cytogenetic, and molecular data. Transcriptome sequencing (RNA-seq) was performed on 200 bone marrow specimens using TruSeq library preparation and HiSeq 2000/2500 or NovaSeq 6000 sequencers (Illumina). The purpose of this study was to define the frequency of chromosomal abnormalities of ALL patients in adults and children in Indonesian patients after full remission for international collaboration has improved and advanced the diagnosis and treatment of ALL in Indonesia. Our resulting data showed that the most common structural abnormality was t(9;22) in 15% of the patients. The frequency of genetic abnormalities was 69 % and 60% for numerical and/or structural in the B-ALL and T-ALL patients, respectively. The adults had a higher incidence of t(9;22) and a lower incidence of hyperdiploid than children. In conclusion: The results of this study molecular subtypes differ strikingly in their responses to treatment that needs more assessment.

Keywords: Cytogenetic; Transcriptome sequencing; Acute lymphoblastic leukemia (ALL)  

Copyright © 2024 Erika, et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cited by other articlesReferencesStatistics
The citation data is computed by the following citation measuring services:Google Scholar
Cited by CrossRef (1)
Cited by Scopus (0)

1. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet (London, England). 2008;371(9617):1030-43.
https://doi.org/10.1016/S0140-6736(08)60457-2
2. Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146-62.
https://doi.org/10.1016/S0140-6736(19)33018-1
3. Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 2007; 109: 944-950.
https://doi.org/10.1182/blood-2006-05-018192
4. Mostert S, Sitaresmi MN, Gundy CM, Sutaryo, Veerman AJ. Influence of socioeconomic status on childhood acute lymphoblastic leukemia treatment in Indonesia. Pediatrics. 2006;118(6):e1600-6.
https://doi.org/10.1542/peds.2005-3015
5. Tavernier E, Boiron JM, Huguet F, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia 2007; 21: 1907-1914.
https://doi.org/10.1038/sj.leu.2404824
6. Perdana A, Saputra F, Aisyi M. Update on Diagnosis of Childhood Acute Lymphoblastic Leukemia (ALL) in Indonesia. Indonesian Journal of Cancer. 2020;14(4):115-6.
https://doi.org/10.33371/ijoc.v14i4.818
7. Jain N, Lamb AV, O'Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood 2016; 127: 1863-1869.
https://doi.org/10.1182/blood-2015-08-661702
8. Maude SL, Barrett D, Teachey DT, Grupp. SA. Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. Cancer J 2014; 20: 119-122.
https://doi.org/10.1097/PPO.0000000000000035
9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews. 2021;10(1):89.
https://doi.org/10.1186/s13643-021-01626-4
10. Barrett DM, Liu X, Jiang S, June CH, Grupp SA, Zhao Y. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum Gene Ther 2013; 24: 717-727.
https://doi.org/10.1089/hum.2013.075
11. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. Natl Cancer Inst 2016; 108: pii djv439.
https://doi.org/10.1093/jnci/djv439
12. Benton CB, Thomas DA, Yang H, et al. Safety and clinical activity of 5-aza-2'-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 2014; 167: 356-365.
https://doi.org/10.1111/bjh.13050
13. Nordlund J, Backlin CL, Zachariadis V, et al. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 2015; 7: 11.
https://doi.org/10.1186/s13148-014-0039-z
14. Duval S, Tweedie R. A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455-63.
https://doi.org/10.1111/j.0006-341X.2000.00455.x
15. Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 2012; 120: 3510-3518.
https://doi.org/10.1182/blood-2012-03-415448
16. Horton TM, Gannavarapu A, Blaney SM, et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006; 58: 13-23.
https://doi.org/10.1007/s00280-005-0135-z
17. Widyapuri G, Gatot D, Pulungan A, Hegar B. Effect of glucocorticoid therapy on adrenal function in children with acute lymphoblastic leukemia. Paediatrica Indonesiana. 2014;54(1):15-21.
https://doi.org/10.14238/pi54.1.2014.15-21
18. Borenstein M, Higgins JP, Hedges LV, Rothstein HR. Basics of meta-analysis: I(2) is not an absolute measure of heterogeneity. Research synthesis methods. 2017;8(1):5-18.
https://doi.org/10.1002/jrsm.1230
19. McClure BJ, Pal M, Heatley SL, et al. Two novel cases of NUTM1-rearranged B-cell acute lymphoblastic leukaemia presenting with high-risk features. Br J Haematol. 2022;196:1407-1411.
https://doi.org/10.1111/bjh.17995
20. Chiaretti S, Messina M, Foà R (2019) BCR/ABL1-like acute lymphoblastic leukemia: How to diagnose and treat? Cancer. 2019;125:194-204.
https://doi.org/10.1002/cncr.31848
21. Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med. 2021;10:3792.
https://doi.org/10.3390/jcm10173792
22. Nasr MR, Rosenthal N, Syrbu S. Expression profiling of transcription factors in B- or T-acute lymphoblastic leukemia/lymphoma and burkitt lymphoma: usefulness of PAX5 immunostaining as pan-Pre-B-cell marker. Am J Clin Pathol. 2010;133:41-48.
https://doi.org/10.1309/AJCPYP00JNUFWCCY
23. Jevremovic D, Roden AC, Ketterling RP, et al. LMO2 Is a Specific Marker of T-Lymphoblastic Leukemia/Lymphoma. Am J Clin Pathol. 2016;145:180-190.
https://doi.org/10.1093/ajcp/aqv024
24. Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med. 2021;10:3792.
https://doi.org/10.3390/jcm10173792
25. Di Giacomo D, La Starza R, Gorello P, et al. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood. 2021;138:773-784.
https://doi.org/10.1182/blood.2020010510
26. Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104:1396-1406.
https://doi.org/10.3324/haematol.2018.204974
27. Passet M, Boissel N, Sigaux F, et al. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood. 2019;133:280-284.
https://doi.org/10.1182/blood-2018-10-882142
28. Leonard J, Wolf JS, Degnin M, et al. Aurora A kinase as a target for therapy in TCF3-HLF rearranged acute lymphoblastic leukemia. Haematologica. 2021;106:2990-2994.
https://doi.org/10.3324/haematol.2021.278692
29. Pincez T, Landry J-R, Roussy M, et al. Cryptic recurrent ACIN1-NUTM1 fusions in non-KMT2A-rearranged infant acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2020;59:125-130.
https://doi.org/10.1002/gcc.22808
30. Bhavsar S, Liu Y-C, Gibson SE, et al. Mutational Landscape of TdT+ Large B-cell Lymphomas Supports Their Distinction From B-lymphoblastic Neoplasms: A Multiparameter Study of a Rare and Aggressive Entity. Am J Surg Pathol. 2022;46:71-82.
https://doi.org/10.1097/PAS.0000000000001750

File and statistics

 

How to cite

Budiyono F, Firman A, Setiati R, Rah E. Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis. American Journal of BioMedicine 2024; 12(2):43-51.

More citation

APA
Budiyono F, Firman A, Setiati R, Rah E. (2024, April 11).Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis. Retrieved April 11, 2024, from Ajbm.net website: https://ajbm.net/research-article_122619html/
MLA
Fathur Budiyono, Achmad Firman, Ray Setiati, Erika Rah.. “Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis.” Ajbm.net, 11 April. 2024, https://ajbm.net/research-article_122619html/.
HARVARD
Fathur Budiyono, Achmad Firman, Ray Setiati, Erika Rah. (2024) Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis, Ajbm.net. Available at: https://ajbm.net/research-article_122619html/ (Accessed: April 11, 2024).
VANCOUVER
Fathur Budiyono, Achmad Firman, Ray Setiati, Erika Rah. Investigates the genetic types of acute lymphoblastic leukemia in full remission Indonesian patients: a cross-sectional analysis [Internet]. Ajbm.net. 2024 [cited 2024 Apr 11]. Available from: https://ajbm.net/research-article_122619html/

Article Metrics

Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

All articles published in American Journal of BioMedicine  are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.