Protective role of TAT-HSP70 after myocardial I/R injury

 
crossMark

doi: 10.18081/2333-5106/015-05/289-294 
American Journal of BioMedicine Volume 3, Issue 5, pages 289-294
Published: 26 May 2015


Martin A. Meenakshi; Erik G. Seth; Michael Robbie

Abstract

Myocardial ischemia reperfusion injury I/R adversely affects cardiac function. Heat shock proteins (HSPs) are a highly conserved family of proteins with diverse functions expressed by all cells exposed to environmental stress including myocardila injury. We investigated release of small constitutive heat shock proteins (HSPs) from mouse myocardium and the effects of TAT-HSP70 after myocardial I/R via occluding the left coronary artery (LAD). The results support the hypothesis that elevated HSPs in myocardium after ischemia and reperfusion and contributes to the inflammatory mechanism of myocardial functional injury. Further investigation of the significance of HSPs accumulation to the evolution of myocardial injury.

Keywords: TAT-HSP70; Myocardial I/R injury; Heat shock response


Limited Access             Full Text-PDF                Cited-by-Linking


References

1. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002;53:31–47. [PubMed]

2. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or non-invasive strategy. JAMA 2001;286:2107–13. [PubMed]

3. Bethke K, Staib F, Distler M, et al. Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 2002;169:6141–8. [PubMed]

4. Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR)2 and TLR4. J Biol Chem 2002;277:15028–34. [PubMed]

5. Williams RS, Benjamin IJ. Protective responses in the ischemic myocardium. J Clin Invest 2000;106:813–8. [PubMed]

6. Pockley AG. Heat shock proteins as regulators of the immune response. Lancet 2003;362:469–76. [PubMed]

7. Frantz S, Kobzik L, Kim Y-D, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 1999;104:271–80. [PubMed]

8. Heeschen C, Dimmeler S, Hamm CW, CAPTURE Study Investigators. Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 2003;107:2109–14. [PubMed]

9. Gerner C, Vejda S, Gelbmann D, et al. Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol Cell Proteomics 2002;1:528–37. [PubMed]

10. Collinson PO, Stubbs PJ, Kessler AC. Multicentre evaluation of routine immunoassay of troponin T study. Multicentre evaluation of the diagnostic value of cardiac troponin T, CK-MB mass, and myoglobin for assessing patients with suspected acute coronary syndromes in routine clinical practice. Heart 2003;89:280–6. [PubMed]

11. Alpert JS, Thygesen K. Myocardial infarction redefined: a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. Eur Heart J 2000;21:1502–13. [PubMed]

12. Berberian PA, Myers W, Tytell M, et al. Immunohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries. Am J Pathol 1990;136:71–80. [PubMed]

13. Schlesinger MJ. Heat shock proteins: the search for functions. J Cell Biol 1986;103(2):321–325. [PubMed]

14. Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA. Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 1986;6(4):505–510. [PubMed]

15. Nagata K, Saga S, Yamada KM. Characterization of a novel transformation-sensitive heat-shock protein (HSP47) that binds to collagen. Biochem Biophys Res Commun. 1988;153(1):428–434. [PubMed]

16. Slimani H, Zhai Y, Yousif NG, Ao L, Zeng Q, Fullerton DA, Meng X. Enhanced monocyte chemoattractant protein-1 production in aging mice exaggerates cardiac depression during endotoxemia. Crit Care 2014;18(5):527. [PubMed]

17. Federation of American Societies for Experimental Biology. 72nd annual meeting. Las Vegas, Nevada, May 1-5, 1988. Abstracts of papers 7554-9037; T1-T9; M1-M170. Indexes of abstracts. FASEB J. 1988;2(6):A1597–A2232. [PubMed]

18. Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res 2004;95:1140–1153. [PubMed]

19. Kumar A, Haery C, Parrillo JE. Myocardial dysfunction in septic shock. Crit Care Clin 2000;16:251–287. [PubMed]

20. Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med 2014;20:214–223. [PubMed] [Cross Ref]

21. Nishida K, Okinaga K, Miyazawa Y, Suzuki K, Tanaka M, Hatano M, Hirose A, Adachi M. Emergency abdominal surgery in patients aged 80 years and older. Surg Today 2000;30:22–27. [PubMed]

22. Ono S, Aosasa S, Tsujimoto H, Ueno C, Mochizuki H. Increased monocyte activation in elderly patients after surgical stress. Eur Surg Res 2001;33:33–38. [PubMed] [Cross Ref]

23. Hacham M, White RM, Argov S, Segal S, Apte RN. Interleukin-6 and interleukin-10 are expressed in organs of normal young and old mice. Eur Cytokine Netw 2004;15:37–46. [PubMed]

24. Zhou M, Wu R, Dong W, Leong J, Wang P. Accelerated apoptosis contributes to aging-related hyperinflammation in endotoxemia. Int J Mol Med 2010;25:929–935. [PubMed]

25. Wu R, Zhou M, Dong W, Ji Y, Miksa M, Marini CP, Ravikumar TS, Wang P. Ghrelin hyporesponsiveness contributes to age-related hyperinflammation in septic shock. Ann Surg 2009;250:126–133. [PubMed]

Print Friendly, PDF & Email