Research Article
American Journal of BioMedicine
Volume 12, Issue 3, 2024, Pages 101- 116 10.18081/2333-5106/2024.12/101
Xinxin Zhao, Jing Hu, Winnie Chen, Huali Feng 1*
Abstract
Hodgkin lymphoma (HL), also known as Hodgkin’s disease (HD), is a type of cancer that originates in the lymphatic system. It is divided into two main types: classical HL and nodular lymphocyte-predominant HL. The current challenges encountered in the pivotal role and application of exosomes in Hodgkin lymphoma, future perspectives and emerging technologies as novel strategies include: the combined detection of ctDNA and exosomal proteins and bioinformatics for the minimally invasive diagnosis and monitoring of tumor recurrence and treatment response within Hodgkin lymphoma; the use of exosomes to interfere with or regulate various cytokines, microRNAs, BTLAs, CEACAMs, latent membrane protein-1, multidrug resistance proteins, and heparanase as potential molecular therapy targets, together with drug therapy, microbial therapy, gene therapy, anti-tumor therapy, immunizing therapy, immune checkpoint inhibitors, and chimeric antigen receptor T-cell therapy to avoid resistance, enhance therapeutic effects, promote immunity, and improve the prognosis of relapsed or refractory Hodgkin lymphoma; the use of radiolabeled antibodies, exosomal imaging, and radiotherapy to establish a 'lock-key' therapy as a reference for targeted therapy efficiencies in various stages, and the use of vaccine or immune random libraries, exosome biotechnology strategies, such as dendritic cell vaccine therapy or exosome natural or artificial cargo carrying and delivery, as potential alternatives in the combined immunization therapy of Hodgkin lymphoma. We believe that the diversity and development of exosomes will promote comprehensive applications that can have a potential therapeutic impact on clinical research in Hodgkin lymphoma.
Keywords: Hodgkin lymphoma; Exosomes; Pivotal Role; microRNAs
Copyright © 2024 Feng, et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Cited by CrossRef (2)
Cited by Scopus (0)
1. Weniger, M. A. and Küppers, R. "Molecular biology of Hodgkin lymphoma." Leukemia. 2021;35:968-981. https://doi.org/10.1038/s41375-021-01204-6 |
|||
2. Bienz, Marc, Salima Ramdani, and Hans Knecht. "Molecular pathogenesis of Hodgkin lymphoma: past, present, future." International Journal of Molecular Sciences.2020;21.18:6623. https://doi.org/10.3390/ijms21186623 |
|||
3. Satou, A., Takahara, T., and Nakamura, S. "An update on the pathology and molecular features of Hodgkin lymphoma." Cancers, 2022. https://doi.org/10.3390/cancers14112647 |
|||
4. Brice, P., de Kerviler, E., and Friedberg, J. W. "Classical hodgkin lymphoma." The Lancet, 2021. https://doi.org/10.1016/S0140-6736(20)32207-8 |
|||
5. Momotow, Jesko, et al. "Hodgkin lymphoma-Review on pathogenesis, diagnosis, current and future treatment approaches for adult patients." Journal of Clinical Medicine. 2021;10.5:1125. https://doi.org/10.3390/jcm10051125 |
|||
6. Ehrlich, P. "Hodgkin Disease and Non-Hodgkin Lymphoma (s)." Pediatric Surgical Oncology, 2022. https://doi.org/10.1201/9781351166126-16 |
|||
7. Brune, Magdalena M., et al. "Genomic landscape of Hodgkin lymphoma." Cancers. 2021;13.4:682. https://doi.org/10.3390/cancers13040682 |
|||
8. Bertuzzi, C., Sabattini, E., and Agostinelli, C. "Immune microenvironment features and dynamics in Hodgkin lymphoma." Cancers, 2021. https://doi.org/10.3390/cancers13143634 |
|||
9. Opinto, Giuseppina, et al. "Hodgkin lymphoma: a special microenvironment." Journal of Clinical Medicine. 2021;10.20:4665. https://doi.org/10.3390/jcm10204665 |
|||
10. Hjalgrim, H. and Jarrett, R. F. "Epidemiology of Hodgkin lymphoma." Hodgkin Lymphoma: A Comprehensive Overview, 2020. https://doi.org/10.1007/978-3-030-32482-7_1 |
|||
11. Venanzi, Alessandra, et al. "Dissecting clonal hematopoiesis in tissues of patients with classic Hodgkin lymphoma." Blood cancer discovery. 2021;2:216-225. https://doi.org/10.1158/2643-3230.BCD-20-0203 |
|||
12. Voorhees, T. J. and Beaven, A. W. "Therapeutic updates for relapsed and refractory classical hodgkin lymphoma." Cancers, 2020. https://doi.org/10.3390/cancers12102887 |
|||
13. Carbone, Antonino, et al. "Immunodeficiency-associated Hodgkin lymphoma." Expert Review of Hematology. 2021;14:547-559. https://doi.org/10.1080/17474086.2021.1935851 |
|||
14. Maco, Maria, et al. "Circulating tumor DNA in Hodgkin lymphoma." Annals of Hematology. 2022;101: 2393-2403. https://doi.org/10.1007/s00277-022-04949-x |
|||
15. Eichenauer, Dennis A., and Andreas Engert. "How I treat nodular lymphocyte-predominant Hodgkin lymphoma." Blood, The Journal of the American Society of Hematology. 2020;136;2987-2993. https://doi.org/10.1182/blood.2019004044 |
|||
16. Munir, Faryal, et al. "Classical Hodgkin Lymphoma: From Past to Future-A Comprehensive Review of Pathophysiology and Therapeutic Advances." International journal of molecular sciences. 2023;24:10095. https://doi.org/10.3390/ijms241210095 |
|||
17. Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel‐Maksoud MS, Elsherbiny N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biology International. 2021;45(9):1807-31. https://doi.org/10.1002/cbin.11620 |
|||
18. Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev. 2021;179:113910. https://doi.org/10.1016/j.addr.2021.113910 |
|||
19. Ailuno G, Baldassari S, Lai F, Florio T et al. Exosomes and extracellular vesicles as emerging theranostic platforms in cancer research. Cells 2020; 9:2569. https://doi.org/10.3390/cells9122569 |
|||
20. Mughees M, Kumar K, Wajid S. Exosome vesicle as a nano-therapeutic carrier for breast cancer. Journal of drug targeting. 2021. https://doi.org/10.1080/1061186X.2020.1808001 |
|||
21. Küçükgüven MB, Çelebi-Saltik B. Stem Cell Based Exosomes: Are They Effective in Disease or Health?. Cell Biology and Translational Medicine, Volume 13: Stem Cells in Development and Disease. 2021:45-65. https://doi.org/10.1007/5584_2021_630 |
|||
22. Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology. 2022. https://doi.org/10.3390/biology11060804 |
|||
23. Habib S, Mansour AM, Baban B, Elmasry K. Extracellular Vesicles and Diabetic Retinopathy: Nano-Sized Vesicles with Mega-Sized Hopes. 2024. https://doi.org/10.5772/intechopen.1005791 |
|||
24. Wang J, Ma P, Kim DH, Liu BF et al. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today. 2021. https://doi.org/10.1016/j.nantod.2020.101066 |
|||
25. Kamiya K, Osaki T, Takeuchi S. Formation of nano-sized lipid vesicles with asymmetric lipid components using a pulsed-jet flow method. Sensors and Actuators B: Chemical. 2021. https://doi.org/10.1016/j.snb.2020.128917 |
|||
26. Mu N, Li J, Zeng L, You J, Li R, Qin A, Liu X, Yan F, Zhou Z. Plant-derived exosome-like nanovesicles: current progress and prospects. International Journal of Nanomedicine. 2023:4987-5009. https://doi.org/10.2147/IJN.S420748 |
|||
27. Hernández-Walias FJ, Vázquez E, Pacheco Y, et al. Risk, diagnostic and predictor factors for classical hodgkin lymphoma in HIV-1-infected individuals: role of plasma exosome-derived miR-20a and miR-21. Journal of Clinical Medicine. 2020;9(3):760. https://doi.org/10.3390/jcm9030760 |
|||
28. Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and therapeutic potential of extracellular vesicles in B-cell malignancies. Frontiers in oncology. 2020;10:580874. https://doi.org/10.3389/fonc.2020.580874 |
|||
29. Repetto O, Lovisa F, Elia C, et al. Proteomic exploration of plasma exosomes and other small extracellular vesicles in pediatric hodgkin lymphoma: a potential source of biomarkers for relapse occurrence. Diagnostics. 2021;11(6):917. https://doi.org/10.3390/diagnostics11060917 |
|||
30. Küçük C, Esmeray Sönmez E, Hatipoğlu T, et al. Potential diagnostic and prognostic biomarkers of pediatric Burkitt lymphoma identified through miRNA expression profiling. Pediatric research. 2024;11:1-2. https://doi.org/10.1038/s41390-024-03478-9 |
|||
31. Ofori K, Bhagat G, Rai AJ. Exosomes and extracellular vesicles as liquid biopsy biomarkers in diffuse large B‐cell lymphoma: Current state of the art and unmet clinical needs. British Journal of Clinical Pharmacology. 2021;87(2):284-94. https://doi.org/10.1111/bcp.14611 |
|||
32. Nagpal P, Descalzi‐Montoya DB, Lodhi N. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes. Cancer Reports. 2021. https://doi.org/10.1002/cnr2.1311 |
|||
33. Cao D, Cao X, Jiang Y, Xu J, Zheng Y, Kang D, Xu C. Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B‐cell lymphoma. Hematological Oncology. 2022;40(2):172-80. https://doi.org/10.1002/hon.2956 |
|||
34. Lv L, Liu Y. Clinical application of liquid biopsy in non-Hodgkin lymphoma. Frontiers in Oncology. 2021. https://doi.org/10.3389/fonc.2021.658234 |
|||
35. Velasco-Suelto J, Gálvez-Carvajal L, Comino-Méndez I, Rueda-Domínguez A. Hodgkin lymphoma and liquid biopsy: a story to be told. Journal of Experimental & Clinical Cancer Research. 2024;43(1):184. https://doi.org/10.1186/s13046-024-03108-6 |
|||
36. Yazdanparast S, Huang Z, Keramat S, Izadirad M, Li YD, Bo L, Gharehbaghian A, Chen ZS. The roles of exosomal microRNAs in diffuse large B-cell lymphoma: Diagnosis, prognosis, clinical application, and biomolecular mechanisms. Frontiers in Oncology. 2022;12:904637. https://doi.org/10.3389/fonc.2022.904637 |
|||
37. Cariello M, Squilla A, Piacente M, Venutolo G, Fasano A. Drug Resistance: The role of Exosomal miRNA in the microenvironment of hematopoietic tumors. Molecules. 2022;28(1):116. https://doi.org/10.3390/molecules28010116 |
|||
38. Bang YH, Shim JH, Ryu KJ, et al. Clinical relevance of serum-derived exosomal messenger RNA sequencing in patients with non-Hodgkin lymphoma. Journal of Cancer. 2022;13(5):1388. https://doi.org/10.7150/jca.69639 |
|||
39. Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Exosome-mediated therapeutic strategies for management of solid and hematological malignancies. Cells. 2022;11(7):1128. https://doi.org/10.3390/cells11071128 |
|||
40. Maligianni I, Yapijakis C, Nousia K, Bacopoulou F, Chrousos GP. Exosomes and exosomal non coding RNAs throughout human gestation. Experimental and Therapeutic Medicine. 2022;24(3):1-3. https://doi.org/10.3892/etm.2022.11518 |
|||
41. Qiu Y, Li P, Zhang Z, Wu M. Insights into exosomal non-coding RNAs sorting mechanism and clinical application. Frontiers in Oncology. 2021. https://doi.org/10.3389/fonc.2021.664904 |
|||
42. Sufianov A, Kostin A, Begliarzade S, et al. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Non-coding RNA Research. 2023;8(2):192-204. https://doi.org/10.1016/j.ncrna.2023.02.001 |
|||
43. Abramowicz A, Story MD. The long and short of it: the emerging roles of non-coding RNA in small extracellular vesicles. Cancers. 2020. https://doi.org/10.3390/cancers12061445 |
|||
44. Poulet C, Njock MS, Moermans C, Louis E, Louis R, Malaise M, Guiot J. Exosomal long non-coding RNAs in lung diseases. International journal of molecular sciences. 2020;21(10):3580. https://doi.org/10.3390/ijms21103580 |
|||
45. Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. Journal of Translational Medicine. 2022;20(1):30. https://doi.org/10.1186/s12967-022-03231-y |
|||
46. Pathania AS, Challagundla KB. Exosomal long non-coding RNAs: emerging players in the tumor microenvironment. Molecular Therapy-Nucleic Acids. 2021. https://doi.org/10.1016/j.omtn.2020.09.039 |
|||
47. Francavilla A, Turoczi S, Tarallo S, Vodicka P, Pardini B, Naccarati A. Exosomal microRNAs and other non-coding RNAs as colorectal cancer biomarkers: a review. Mutagenesis. 2020;35(3):243-60. https://doi.org/10.1093/mutage/gez038 |
|||
48. Arcucci V, Stacker SA, Achen MG. Control of gene expression by exosome-derived non-coding RNAs in cancer angiogenesis and lymphangiogenesis. Biomolecules. 2021. https://doi.org/10.3390/biom11020249 |
|||
49. Wu M, Karadoulama E, Lloret-Llinares M, et al. The RNA exosome shapes the expression of key protein-coding genes. Nucleic acids research. 2020;48(15):8509-28. https://doi.org/10.1093/nar/gkaa594 |
|||
50. Wang X, Huang J, Chen W, Li G, Li Z, Lei J. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Experimental & molecular medicine. 2022;54(9):1390-400. https://doi.org/10.1038/s12276-022-00855-4 |
|||
51. Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT. Isolation and characterization of exosomes for cancer research. Journal of hematology & oncology. 2020;13:1-24. https://doi.org/10.1186/s13045-020-00987-y |
|||
52. Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. The FEBS Journal 2021;288:10-35. https://doi.org/10.1111/febs.15558 |
|||
53. Dragomir MP, Moisoiu V, Manaila R, Pardini B, Knutsen E, Anfossi S, Amit M, Calin GA. A holistic perspective: exosomes shuttle between nerves and immune cells in the tumor microenvironment. Journal of Clinical Medicine. 2020;9(11):3529. https://doi.org/10.3390/jcm9113529 |
|||
54. Wang S, Shi Y. Exosomes Derived from Immune Cells: The New Role of Tumor Immune Microenvironment and Tumor Therapy. Int J Nanomedicine. 2022;17:6527-6550. https://doi.org/10.2147/IJN.S388604 |
|||
55. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal transduction and targeted therapy. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0 |
|||
56. Chen X, Chi H, Zhao X, Pan R, Wei Y, Han Y. Role of exosomes in immune microenvironment of hepatocellular carcinoma. Journal of oncology. 2022;2022(1):2521025. https://doi.org/10.1155/2022/2521025 |
|||
57. Li M, Li S, Du C, et al. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. European Journal of Medicinal Chemistry. 2020;207:112784. https://doi.org/10.1016/j.ejmech.2020.112784 |
|||
58. Titu S, Gata VA, Decea RM, Mocan T, Dina C, Irimie A, Lisencu CI. Exosomes in colorectal cancer: from physiology to clinical applications. International Journal of Molecular Sciences. 2023;24(5):4382. https://doi.org/10.3390/ijms24054382 |
|||
59. Xie QH, Zheng JQ, Ding JY, Wu YF, Liu L, Yu ZL, Chen G. Exosome-mediated immunosuppression in tumor microenvironments. Cells. 2022;11(12):1946. https://doi.org/10.3390/cells11121946 |
|||
60. Soe ZY, Park EJ, Shimaoka M. Integrin regulation in immunological and cancerous cells and exosomes. International journal of molecular sciences. 2021;22(4):2193. https://doi.org/10.3390/ijms22042193 |
.
How to cite
Zhao X, Hu J, Chen W, Feng H. Progress on the Pivotal Role and Application of Exosomes in Hodgkin Lymphoma: Carcinogenesis, Diagnosis, Therapy, and Prognosis. American Journal of BioMedicine 2024; 12(3):101-116.
More citation
Article metric
Permissions
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles published in American Journal of BioMedicine are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.