Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes


Research Article                

American Journal of BioMedicine                 

 Volume 13, Issue 1, 2025, Pages 19-34    10.18081/2333-5106/2025.1/19

Costa R. Suffys, Rafael Ferrazoli  , Emilyn Sharma


Abstract

Chronic inflammation plays a fundamental role in the pathogenesis of type 2 diabetes mellitus (T2DM), yet the precise mechanisms linking inflammatory markers to metabolic dysfunction remain incompletely understood. This study investigated the relationship between interleukin-6 (IL-6), a key pro-inflammatory cytokine, and various metabolic parameters in T2DM patients, with particular focus on insulin resistance and glycemic control. In this cross-sectional study, we analyzed data from 150 T2DM patients (aged 40-75 years, 48% female). Serum IL-6 levels were measured using high-sensitivity ELISA. Insulin resistance was assessed via HOMA-IR, and glycemic control was evaluated through HbA1c measurements. Additional parameters included BMI, high-sensitivity C-reactive protein (hs-CRP), and disease duration. Statistical analyses included correlation coefficients, multiple regression analysis, and subgroup analyses by gender and disease duration. Strong positive correlations were observed between serum IL-6 levels and HOMA-IR (r = 0.72, p < 0.001), HbA1c (r = 0.65, p < 0.001), and hs-CRP (r = 0.78, p < 0.001). IL-6 levels increased progressively with disease duration, showing a 55% elevation from 0-5 years to 11-15 years of diagnosis (p < 0.01). Male patients exhibited 12% higher baseline IL-6 levels compared to females, with this gender gap widening with disease duration. Multiple regression analysis revealed that IL-6 levels independently predicted insulin resistance after adjusting for age, BMI, and disease duration. Conclusions, our findings demonstrate that elevated IL-6 levels are strongly associated with insulin resistance and poor glycemic control in T2DM, with significant gender-specific differences and disease duration effects. These results suggest that IL-6 could serve as both a valuable biomarker for disease progression and a potential therapeutic target in T2DM management. The observed relationships provide new insights into the inflammatory basis of T2DM and suggest the need for personalized, inflammation-targeted therapeutic approaches.

Keywords: Type 2 diabetes mellitus, Interleukin-6, Insulin resistance, Inflammation, Glycemic control, HOMA-IR

Copyright © 2025 Sharma, et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cited by other articlesReferencesStatistics
 

1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867.
https://doi.org/10.1038/nature05485
2. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia.1998;41(10):1241-1248.
https://doi.org/10.1007/s001250051058
3. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327-334.
https://doi.org/10.1001/jama.286.3.327
4. Fernandez-Real JM, Pickup JC. Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2008;19(1):10-16.
https://doi.org/10.1016/j.tem.2007.10.004
5. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107.
https://doi.org/10.1038/nri2925
6. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-846.
https://doi.org/10.1038/nature05482
7. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low- density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557-1565.
https://doi.org/10.1056/NEJMoa021993
8. Spranger J, Kroke A, Möhlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes. 2003;52(3):812-817.
https://doi.org/10.2337/diabetes.52.3.812
9. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008;14(3-4):222-231.
https://doi.org/10.2119/2007-00119.Tilg
10. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793-1801.
11. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4-12.
12. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111-1119.
https://doi.org/10.1172/JCI25102
13. Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283-307.
https://doi.org/10.1517/13543784.2015.974804
14. Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia. 2010;53(1):10-20.
https://doi.org/10.1007/s00125-009-1573-7
15. Festa A, D'Agostino R Jr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome. Circulation. 2000;102(1):42-47.
https://doi.org/10.1161/01.CIR.102.1.42
16. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813-823.
https://doi.org/10.2337/diacare.27.3.813
17. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4-7.
https://doi.org/10.1016/j.it.2003.10.013
18. Goldfine AB, Fonseca V, Jablonski KA, et al. The effects of salsalate on glycemic control in patients with type 2 diabetes. Ann Intern Med. 2010;152(6):346-357.
https://doi.org/10.7326/0003-4819-152-6-201003160-00004
19. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events. Circulation. 2003;107(3):391-397.
https://doi.org/10.1161/01.CIR.0000055014.62083.05
20. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169-2180.
https://doi.org/10.1053/j.gastro.2007.03.059
21. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-1808.
https://doi.org/10.1172/JCI200319246
22. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in insulin resistance. J Clin Invest. 2003;112(12):1821-1830.
https://doi.org/10.1172/JCI200319451
23. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects. Arterioscler Thromb Vasc Biol. 1999;19(4):972-978.
https://doi.org/10.1161/01.ATV.19.4.972
24. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745-E751.
https://doi.org/10.1152/ajpendo.2001.280.5.E745
25. Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85(9):3338-3342.
https://doi.org/10.1210/jcem.85.9.6839
26. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196-4200.
https://doi.org/10.1210/jc.82.12.4196
27. Vozarova B, Weyer C, Hanson K, et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res. 2001;9(7):414-417.
https://doi.org/10.1038/oby.2001.54
28. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003;52(11):2784-2789.
https://doi.org/10.2337/diabetes.52.11.2784
29. Wallenius V, Wallenius K, Ahrén B, et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8(1):75-79.
https://doi.org/10.1038/nm0102-75
30. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment. Diabetologia. 1985;28(7):412-419.
https://doi.org/10.1007/BF00280883
31. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-1607.
https://doi.org/10.2337/diab.37.12.1595
32. Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med. 2009;15(4):373-374.
https://doi.org/10.1038/nm0409-373
33. Donath MY, Dalmas E, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab. 2013;17(6):860-872.
https://doi.org/10.1016/j.cmet.2013.05.001
34. Kolb H, Eizirik DL. Resistance to type 2 diabetes mellitus: a matter of hormesis? Nat Rev Endocrinol. 2011;8(3):183-192.
https://doi.org/10.1038/nrendo.2011.158
35. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111-2117.
https://doi.org/10.1172/JCI57132
36. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772-783.
https://doi.org/10.1038/nri1937
37. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183-190.
https://doi.org/10.1038/nm1166
38. Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191-198.
https://doi.org/10.1038/nm1185
39. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333-336.
https://doi.org/10.1038/nature01137
40. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673-1677.
https://doi.org/10.1126/science.1061620
41. Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109(10):1321-1326.
https://doi.org/10.1172/JCI0214955
42. Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517-1526.
https://doi.org/10.1056/NEJMoa065213
43. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610-614.
https://doi.org/10.1038/39335
44. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91.
https://doi.org/10.1126/science.7678183
45. Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem. 1993;268(35):26055-26058.
https://doi.org/10.1016/S0021-9258(19)74276-8
46. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665-668.
https://doi.org/10.1126/science.271.5249.665
47. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047-9054.
https://doi.org/10.1074/jbc.275.12.9047
48. Gao Z, Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115-48121.
https://doi.org/10.1074/jbc.M209459200

.


Volume 13, Issue 1
January to March 2025

Download article

   

How to cite

Suffys C, Ferrazoli R, Sharma E. Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes. American Journal of BioMedicine 2025; 13(1):19-34.

More citation

Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma (2025). Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes. American Journal of Biomedicine, 13(1), 19-34. https://doi.org/ 10.18081/2333-5106/2025.1/19
Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma. "Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes." American Journal of Biomedicine, vol. 13, no. 1, 2025, pp. 19-34. DOI: 10.18081/2333-5106/2025.1/19.
Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma. Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes. Am J Biomed. 2025;13(1):19-34. DOI: 10.18081/2333-5106/2025.1/19. PMID: .
Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma 2025, "Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes", American Journal of Biomedicine, vol. 13, no. 1, pp. 19-34.
@article{costa2025, title={Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes}, author={Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma}, journal={American Journal of Biomedicine}, volume={13}, number={1}, pages={19-34}, year={2025}, doi={ 10.18081/2333-5106/2025.1/19} }
TY - JOUR AU - Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma TI - Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes JO - American Journal of Biomedicine VL - 13 IS - 1 SP - 19-34 PY - 2025 DO - 10.18081/2333-5106/2025.1/19 ER -
%0 Journal Article %A Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma %T Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes %J American Journal of Biomedicine %V 13 %N 1 %P 19-34 %D 2025 %R 10.18081/2333-5106/2025.1/19 %M
Costa R. Suffys, Rafael Ferrazoli, Emilyn Sharma (2025). Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes. American Journal of Biomedicine, 13(1), 19-34. https://doi.org/ 10.18081/2333-5106/2025.1/19

Article metric


Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License

All articles published in American Journal of BioMedicine  are licensed under Copyright Creative Commons Attribution 4.0 International License.