Taurine attenuates inflammatory response following cerebral ischemia and reperfusion

Print Friendly, PDF & Email

[Limited Access]      HTML         Full Text-PDF

American Journal of BioMedicine  Volume 2, Issue 5, pages 542–554, May 2014

Yezi Xerri; Mark N Evans; Giorgio Inoue; Tennent K Hanley; Douglas L Hainz


Taurine is a kind of endogenous free amino acid in tissue and a potent antioxidant agent its function may in part be to adjust calcium homeostasis in cells, anti-oxidative stress, anti-inflammatory and cell protector but little is known about the expression or the role of Taurine in the central nervous system. Stroke is the major cause of death and disability worldwide. Here, we investigated the role of Taurine in ischemic stroke as a potential neuroprotective using rat model of transient cerebral ischemia. Transient cerebral ischemia was induced by MCAO were performed on male Sprague-Dawley rats. TTC staining used to measurement of infarct volume in the brain and ELISA kits to assay cytokines. Our data suggested that Taurine reduced cerebral infarct size, decreased pro-inflammatory cytokines expression and produced lower level of ICAM-1. These results suggest that Taurine can be exerting significantly protective effect against brain ischemic injury through inhibiting pro-inflammatory cytokines and ICAM-1.

Keywords: Strock; Taurine; Proinflammatroy cytokines; ICAM-1; Cerebral I/R


1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:480–486. [PubMed]

2.  Immink RV, van den Born BJ, van Montfrans GA, Koopmans RP, Karemaker JM, van Lieshout JJ. Impaired cerebral autoregulation in patients with malignant hypertension. Circulation 2004;110:2241–2245. [PubMed]

 3. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, Ojemann RG. Thresholds of focal cerebral ischemia in awake monkeys. Journal of neurosurgery 1981; 54:773–782. [PubMed]

4. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 2008;15:473–493. [PubMed]

5. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1:17–25. [PubMed]

6. Smrcka M, Horky M, Otevrel F, Kuchtickova S, Kotala V, et al. The onset of apoptosis of neurons induced by ischemia-reperfusion injury is delayed by transient period of hypertension in rats. Physiol Res 2003; 52: 117–122. [PubMed]

7. Sairanen T, Karjalainen-Lindsberg ML, Paetau A, Ijas P, Lindsberg PJ. Apoptosis dominant in the periinfarct area of human ischaemic stroke a possible target of antiapoptotic treatments. Brain 2006;129: 189–199. [PubMed]

8. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79:1431–1568. [PubMed]

9. Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci 1998; 18: 1009–1019. [PubMed]

10. Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis 1999;14: 117–124. [PubMed]

11.  Doeppner TR, El Aanbouri M, Dietz GP, Weise J, Schwarting S, et al. Transplantation of TAT-Bcl-xL-transduced neural precursor cells: long-term neuroprotection after stroke. Neurobiol Dis 2010; 40: 265–276. [PubMed]

12.   Guz G, Oz E, Lortlar N. The effect of taurine on renal ischemia-reperfusion injury. Amino Acids 2007; 32:405–11. [PubMed]

13.  Men XL, Lianyuan Z, Shuyun D, Yibing Z. Influence of taurine on apoptosis of acute lung injury following limbs ishcemia-reperfusion in rats. Chin J Pathophys 2004; 20:421–4.  [Abstract/FREE Full Text]

14.  Kumari N1, Prentice H, Wu JY. Taurine and its neuroprotective role. Adv Exp Med Biol 2013;775:19-27. [PubMed]

15.  Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R. Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 2007;73(2):287–95.  [PubMed]

16. Oz E, Erbaş D, Gelir E, Aricioğlu A. Taurine and calcium interaction in protection of myocardium exposed to ischemic reperfusion injury. Gen Pharmacol 1999; 33(2):137–141. [PubMed]

17. Welty MC, Welty JD, McBroom MJ. Effect of isoproterenol and Taurine on heart calcium in normal and cardiomyopathic hamsters. J Mol Cell Cardiol 1982;14(6):353–7. [PubMed]

18. Yucel O, Kunak ZI, Macit E, Gunal A, Gozubuyuk A, Gul H, Genc O. Protective efficacy of Taurine against pulmonary edema progression: experimental study. J Cardiothorac Surg 2008;3:57. [PubMed]

19. Chen ST, Hsu CY, Hogan EL, Macriq H, Balentine JD. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986; 17: 738–743. [Abstract/FREE Full Text]

20. Lin TN, He YY, Wu G, Khan M, Hsu CY. Effect of brain edema on infarct volume in a focal cerebral ischemia model in the rat. Stroke 1993; 24: 117–121. [Abstract/FREE Full Text]

21.  Yu SS, Zhao J, Zheng WP, Zhao Y. Neuroprotective effect of 4-hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-apoptosis in rats. Brain Res 2010; 1308: 167–175. [View Articl] 

22. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84–91. [PubMed]

23. Yousif NG. Fibronectin promotes migration and invasion of ovarian cancer cells through up‐regulation of FAK–PI3K/Akt pathway. Cell biology international 2014; 38(1):85-91. [PubMed]

24. Xiang H, Wael S, Jong-Ho K, Yang-Jin L,  Xiang X, Young-Kyun S. IL-37: Novel neuroprotective effects after brain ischemia and reperfusion. American journal of BioMedicine 2014;2(1):113-123. [Abstract/FREE Full Text]

25. Collard CD, Park KA, Montalto MC et al. (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 2002; 277:14801–14811. [Abstract/FREE Full Text]

26. Liu T, McDonnell PC, Young PR, White RF, Siren AL, Hallenbeck JM, Barone FC, Feuerstein GZ. Interleukin-1β mRNA expression in ischemic rat cortex. Stroke 1993;24:1746–1751. [Abstract/FREE Full Text

27.  Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 2004; 24: 351–71. [PubMed]

28. Austin EW, Yousif NG, Li J, Ao L, Reece T, Weyant MJ, Cleveland JC. Ghrelin reduces myocardial injury following global ischemia and reperfusion via suppression of myocardial inflammatory response. American journal of BioMedicine 2013; 1(2):38-48. [Abstract/FREE Full Text

29.  Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int 2002;40: 511–526. [View Article]

30.  Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 2005;102: 12005–10. [View Article]

31.  Luo Y, Yang YP, Liu J, Li WH, Yang J, Sui X. Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res 2014; 27:1565:37-47.  [PubMed]

32.  Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 201;87: 779-789. [PubMed]

33.  Vila N, Castillo J, Dávalos A, Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 2000;31:2325-2329. [Abstract/Full-manuscript]

34.  Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998; 95: 15769-15774. [Abstract/Full-manuscript]

35.  Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H et al. Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 2011; 42: 2589-2594. [PubMed]

36.  Dinapoli VA, Benkovic SA, Li X, Kelly KA, Miller DB et al. Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat. Neuroscience 2010; 170: 633-644. [PubMed]

37.  Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmunol 2003; 139: 93-101. [PubMed]

38.  Patzer A, Zhao Y, Stöck I, Gohlke P, Herdegen T, et al. Peroxisome proliferator-activated receptorsgamma (PPARgamma) differently modulate the interleukin-6 expression in the peri-infarct cortical tissue in the acute and delayed phases of cerebral ischaemia. Eur J Neurosci 2008; 28: 1786-1794. [PubMed]

39.  Zhao Y, Patzer A, Gohlke P, Herdegen T, Culman J. The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur J Neurosci 2005; 22: 278-282. [Abstract/Full-manuscript]

American Journal of Biomedicine © 2018 BM-Publisher
%d bloggers like this: