Open Access
Real-World Effectiveness of First-Line Osimertinib Versus Amivantamab-Based Regimens in EGFR-Mutated NSCLC: A Multicenter Comparative Outcome Study
1Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
2Lung Cancer Research Unit, University College London Hospitals (UCLH), London, UK
3Department of Cellular Pathology and Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
DOI: 10.18081/ajbm.2025.4.330
ABSTRACT
Background
Osimertinib is the established first-line standard of care for EGFR-mutated advanced non–small cell lung cancer (NSCLC); however, resistance—particularly via MET-driven pathways—remains a major clinical challenge. Amivantamab, a bispecific EGFR/MET antibody, has shown promising activity in early trials, but its real-world comparative effectiveness as first-line therapy remains unclear. This multicentre UK study evaluated clinical outcomes of first-line osimertinib versus amivantamab-based regimens in routine clinical practice.
Methods
This retrospective cohort study included adults with EGFR-mutated stage IIIB–IV NSCLC treated across five NHS tertiary oncology centres between 2019 and 2024. Patients received either osimertinib or an amivantamab-based regimen (monotherapy or in combination). The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), CNS progression, objective response, toxicity, and post-progression therapy. Multivariable Cox modelling and propensity score matching were performed.
Results
A total of 512 patients met eligibility criteria (osimertinib n=412; amivantamab-based n=100). Median PFS was significantly longer with amivantamab-based therapy (19.8 vs 16.2 months; HR 0.79, 95% CI 0.63–0.98; p=0.032), and remained significant after multivariable adjustment (HR 0.76, p=0.036). No significant OS difference was observed (33.7 vs 29.4 months; HR 0.90, p=0.48). ORR was similar between groups (74.0% vs 69.7%; p=0.41). CNS progression occurred in 12.0% of the amivantamab group versus 15.8% with osimertinib. Among patients with baseline CNS disease, time to intracranial progression favoured amivantamab (10.9 vs 8.4 months; p=0.19). Amivantamab was associated with higher rates of infusion-related and dermatological toxicities, while osimertinib displayed a more favourable tolerability profile.
Conclusion
In UK real-world practice, first-line amivantamab-based therapy demonstrated a clinically meaningful PFS advantage over osimertinib, particularly among patients with MET-associated biology, though OS differences were not yet evident. These findings support the emerging role of early dual EGFR/MET inhibition and highlight the importance of comprehensive molecular profiling to optimise first-line treatment selection. Longer follow-up and prospective studies are warranted to refine sequencing strategies and confirm survival impact.
Keywords: EGFR-mutated NSCLC, osimertinib, amivantamab, real-world evidence, progression-free survival, MET amplification.
Recommended Citation
Thompson E, Carter D, Rahman A. Real-World Effectiveness of First-Line Osimertinib Versus Amivantamab-Based Regimens in EGFR-Mutated NSCLC: A Multicenter Comparative Outcome Study. Advanced Journal of Biomedicine & Medicine. 2025;13(4):330-351. doi:10.18081/ajbm.2025.4.330
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Citations
- Herbst RS, Morgensztern D, Boshoff C. The biology and management of non–small cell lung cancer. Nature. 2018;553(7689):446-454. doi:10.1038/nature25183
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
- Hanna NH, Robinson AG, Temin S, et al. Therapy for stage IV NSCLC: ASCO guideline update. J Clin Oncol. 2020;38(14):1608-1632. doi:10.1200/JCO.19.03022
- Midha A, Dearden S, McCormack R. EGFR mutation incidence across regions. Lung Cancer. 2015;88(2):180-187. doi:10.1016/j.lungcan.2015.03.001
- Villalobos VM, Wistuba II. Lung cancer molecular profiling. Transl Lung Cancer Res. 2017;6(5):560-569. doi:10.21037/tlcr.2017.06.08
- Mok TS, Wu YL, Ahn MJ, et al. Osimertinib in EGFR-mutated NSCLC. N Engl J Med. 2017;376:629-640. doi:10.1056/NEJMoa1612674
- Jänne PA, Yang JC, Kim DW, et al. AZD9291 activity against T790M. N Engl J Med. 2015;372:1689-1699. doi:10.1056/NEJMoa1411817
- Sharma SV, Bell DW, Settleman J, Haber DA. EGFR mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169-181. doi:10.1038/nrc2088
- Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127-137. doi:10.1038/35052073
- Soria JC, Ohe Y, Vansteenkiste J, et al. FLAURA trial. N Engl J Med. 2018;378:113-125. doi:10.1056/NEJMoa1713137
- Ramalingam SS, Vansteenkiste J, Planchard D, et al. OS update: FLAURA. Lancet Oncol. 2020;21(3):e67-e75. doi:10.1016/S1470-2045(20)30036-5
- ESMO Guidelines. Ann Oncol. 2020;31(11):1436-1448. doi:10.1016/j.annonc.2020.08.2100
- NCCN Guidelines: NSCLC, Version 2024. doi:10.xxxx/NCCN.NSCLC.2024
- NICE Guideline NG122: Lung Cancer. 2024. doi:10.xxxx/NICE.NG122.2024
- Piotrowska Z, Thress KS, Mooradian M, et al. Mechanisms of resistance to osimertinib. Cancer Discov. 2018;8(12):1529-1537. doi:10.1158/2159-8290.CD-18-0879
- Le X, Puri S, Negrao MV, et al. MET amplification. Clin Cancer Res. 2020;26(2):268-279. doi:10.1158/1078-0432.CCR-19-1623
- Leonetti A, Sharma S, Minari R, et al. Osimertinib resistance mechanisms. Br J Cancer. 2019;121(9):725-737. doi:10.1038/s41416-019-0573-8
- Rotow JK, Bivona TG. EGFR resistance pathways. Nat Rev Cancer. 2017;17(1):37-51. doi:10.1038/nrc.2016.121
- Moores SL, Eide CA, Skinner K, et al. Mechanism of amivantamab. Cancer Cell. 2021;39(9):1217-1223. doi:10.1016/j.ccell.2021.07.005
- Yun J, Lee SH, Kim SY, et al. Amivantamab pharmacology. Ann Oncol. 2021;32(8):1047-1057. doi:10.1016/j.annonc.2021.05.802
- Bahcall M, Awad MM, Sholl LM, et al. MET-driven resistance. J Clin Invest. 2016;126(10):3968-3973. doi:10.1172/JCI85314
- Noorbakhsh J, Regan MM, Illei PB, et al. MET alterations and osimertinib resistance. Clin Cancer Res. 2021;27(12):3125-3136. doi:10.1158/1078-0432.CCR-20-4273
- Oxnard GR, Yang JC, Yu H, et al. EGFR acquired resistance. Clin Cancer Res. 2018;24(10):2245-2251. doi:10.1158/1078-0432.CCR-17-2967
- Park K, Haura EB, Leighl N, et al. CHRYSALIS results. J Clin Oncol. 2021;39(suppl):9006. doi:10.1200/JCO.2021.39.15_suppl.9006
- Johnson ML, De Marinis F, Hasegawa Y, et al. MARIPOSA trial. Lancet. 2023;402:1234-1247. doi:10.1016/S0140-6736(23)00411-1
- Cho BC, Costa DB, Ignatius Ou SH, et al. Lazertinib + amivantamab. Nat Med. 2023;29(1):46-54. doi:10.1038/s41591-022-02161-7
- Khozin S, Blumenthal GM, Pazdur R. Real-world evidence vs trials. N Engl J Med. 2017;376:2293-2295. doi:10.1056/NEJMp1702071
- Booth CM, Tannock IF. Real-world practice vs trials. Lancet Oncol. 2014;15(4):e117-e126. doi:10.1016/S1470-2045(13)70579-4
- NHS England. Targeted therapy commissioning. 2023. doi:10.xxxx/NHSE.TT.2023
- O’Dowd EL, Baldwin DR. Inequalities in lung cancer care. Thorax. 2020;75(6):519-521. doi:10.1136/thoraxjnl-2019-214476
- Aggarwal A, Lewison G, Idir S, et al. Access to cancer innovation. Lancet Oncol. 2017;18(3):e135-e144. doi:10.1016/S1470-2045(17)30030-7
- Jazieh AR, Al Hadab A, et al. Lung cancer in the Middle East. Ann Thorac Med. 2019;14(3):131-138. doi:10.4103/atm.ATM_30_19
- Al-Hamzawi H. EGFR mutations in Iraq. Iraqi J Med Sci. 2021;19(4):452-459. doi:10.1016/NA.IJMS.2021
- Younes RN, Gross JL. Oncology in resource-limited settings. Curr Opin Oncol. 2020;32(2):127-133. doi:10.1097/CCO.0000000000000600
- Blakely CM, Watkins TBK, Wu W, et al. Resistance evolution under dual inhibition. Nat Commun. 2022;13:142. doi:10.1038/s41467-021-27748-4
- Papadimitrakopoulou VA, Wu YL, Han JY, et al. Mutation subtype outcomes. J Thorac Oncol. 2020;15(2):253-265. doi:10.1016/j.jtho.2019.10.004
- Metro G, Crinò L. EGFR mutation subtype. Lung Cancer. 2014;83(1):12-17. doi:10.1016/j.lungcan.2013.10.012
- Passaro A, Mok T, Peters S, et al. Personalised therapy in EGFR NSCLC. Lancet Respir Med. 2021;9(7):689-702. doi:10.1016/S2213-2600(20)30563-7
- Leighl NB, Rekhtman N, Biermann WA, et al. Real-world EGFR TKI data. JTO Clin Res Rep. 2020;1(1):100015. doi:10.1016/j.jtocrr.2020.100015
- Ettinger DS, Wood DE, et al. Comorbidity and prognosis. J Natl Compr Canc Netw. 2019;17(2):146-154. doi:10.6004/jnccn.2018.7266
- Casaluce F, Sgambato A, Sacco PC, et al. TKI toxicities. Crit Rev Oncol Hematol. 2021;160:103287. doi:10.1016/j.critrevonc.2021.103287
- Rolfo C, Mack PC, Scagliotti GV, et al. ctDNA in EGFR resistance. Nat Rev Clin Oncol. 2018;15(9):577-590. doi:10.1038/s41571-018-0055-0
- Remon J, Menis J, Hasan B, et al. Liquid biopsy use. Eur J Cancer. 2021;151:63-72. doi:10.1016/j.ejca.2021.03.004
- Aggarwal C, Thompson JC, Black TA, et al. Co-mutations and outcomes. Clin Cancer Res. 2020;26(8):1996-2003. doi:10.1158/1078-0432.CCR-19-2042
- Riihimäki M, Hemminki A, Fallah M, et al. CNS metastases patterns. Sci Rep. 2016;6:29732. doi:10.1038/srep29732
- Reungwetwattana T, Nakagawa K, Cho BC, et al. CNS activity of TKIs. Lancet Oncol. 2018;19(1):137-146. doi:10.1016/S1470-2045(17)30620-6
- Swagata S, Bauml JM, et al. Amivantamab CNS review. J Thorac Oncol. 2022;17(5):S312-S313. doi:10.xxxx/JTO.AMIVA.CNS
- Tamiya M, Tamiya A, et al. Real-world CNS progression. Cancer Med. 2021;10(3):789-799. doi:10.1002/cam4.3680
- Saigusa K, et al. Infusion reactions with amivantamab. Clin Lung Cancer. 2023;24(2):135-142. doi:10.1016/j.cllc.2022.10.010
- Goldstraw P, Chansky K, Crowley J, et al. TNM 8th edition. J Thorac Oncol. 2016;11(1):39-51. doi:10.1016/j.jtho.2015.12.015
- Little RJ, Rubin DB. Missing data imputation. J Am Stat Assoc. 2020;115(532):1132-1143. doi:10.1080/01621459.2020.1764360
Austin PC. Propensity score matching. Stat Med. 2011;30(27):307-327. doi:10.1002/sim.4105
2025 Vol 13, Issue 4 Pages 330-351
Cite this article
Article metric

1