Critical role of high-mobility-group proteins in kidney development/cross-talk Wnt/β-catenin signaling pathway

AJBM crossMark



The treatment of severe acute kidney injury with dialytic support for renal replacement therapy can be life sustaining and permit recovery from critical illness.The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and reduced in the corresponding adult tissues. We used used in study C57BL/6, HMG+/− and HMG−/−  mice and found that HMG is expressed in the mouse embryonic kidney at the cortex area. HMG knockout led to enhanced Wnt/β-catenin signaling pathway. Analysis of siRNA-mediated loss-of-function experiments in embryonic kidney culture confirmed the role of HMG as a key regulator of cortex epithelium differentiation.

Keywords: High-mobility-group; Wnt/β-catenin; Kidney

Copyright © 2017 by The American Society for BioMedicine and BM-Publisher, Inc.

Article citationReferencesFull-Text/PDFFeedback
The citation data is computed by the following citation measuring services:

Cited by (CrossRef)
Google Scholar

  1. Mehta RL, Chertow GM. Acute renal failure definitions and classification: time for change? J. Am. Soc. Nephrol 2003;14:2178–87. [PubMed]
  2. Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol Cell 2006;24:293–300 [PubMed]
  3. Heringlake M, Knappe M, Vargas Hein O, et al. Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol 2006;72:645–54. [PubMed]
  4. Sandig M, Voura EB, Kalnins VI, Siu CH. Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskel 1997;38:351–364. [PubMed]
  5. Abe K, Takeichi M. NMDA-receptor activation induces calpain-mediated β-catenin cleavages for triggering ene expression. Neuron 2007;53:387–397. [PubMed]
  6. Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006;127:469–480. [PubMed]
  7. Collard JG, Habets GG, Michiels F, et al. Role of Tiam 1 in Rac-mediated signal transduction pathways. Current Topics Microbiol Immunol 2006;213:253–265. [PubMed]
  8. Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit. Care Med 2010;38:261–75. [PubMed]
  9. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001;7:1267–1278. [PubMed]
  10. Fuchtbauer EM. Expression of M-twist during postimplantation development of the mouse. Dev Dyn 1995;204:316–322. [PubMed]
  11. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of β-catenin signaling, Slug, and MAPK. J Cell Biol 2003;163:847–857. [PubMed]
  12. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982;95:333–339. [PubMed]
  13. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of β-catenin signaling, Slug, and MAPK. J Cell Biol 2003;163:847–857. [PubMed]
  14. Segal SS. Regulation of blood flow in the microcirculation. Microcirculatio 2005;12:33–45. [PubMed]
  15. Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Develop 2008;22:2308–2341. [PubMed]
  16. Heasman J, Crawford A, Goldstone K, et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 1994;79:791–803. [PubMed]
  17. Welch WJ, Baumgartl H, Lubbers D, Wilcox CS. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 2003;63:202–8. [PubMed]
  18. Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G. Tumor progression induced by the loss of E-cadherin independent of β-catenin/Tcf-mediated Wnt signaling. Oncogene 2007;26:2290–2298. [PubMed]
  19. Kuroda S, Fukata M, Nakagawa M, et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science 1998;281:832–835. [PubMed]
  20. Lee YM, Park T, Schulz RA, Kim Y. Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem 1997;272:17531–17541. [PubMed]
  21. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 2007;13:7003–7011. [PubMed]
  22. Gunaratnam L, Bonventre JV. HIF in kidney disease and development. J. Am. Soc. Nephrol 2009;20:1877–87. [PubMed]
  23. Lee E, Salic A, Kirschner MW. Physiological regulation of [β]-catenin stability by Tcf3 and CK1epsilon. J Cell Biol 2001;154:983–993. [PubMed]
  24. Nagafuchi A, Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: A 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Reg 1989;1:37–44. [PubMed]
  25. Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. Requirement for Wnt3 in vertebrate axis formation. Nat Gen 1999;22:361–365 [PubMed]
  26. Muller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of β-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 1999; 274:10173–10183. [PubMed]
  27. Deng A, Arndt MA, Satriano J, et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am. J. Physiol. Renal Physiol 2010;299:F1365–73. [PubMed]
  28. Nagafuchi A, Takeichi M, Tsukita S. The 102 kd cadherin-associated protein: Similarity to vinculin and posttranscriptional regulation of expression. Cell 1991;65:849–857. [PubMed]
  29. Zhang Z, Hartmann H, Do VM, et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 1998;395:698–702. [PubMed]
  30. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004;303:1483–1487. [PubMed]
  31. Roose J, Molenaar M, Peterson J, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 1998;395:608–612. [PubMed]
  32. Fujita Y, Krause G, Scheffner M, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 2002;4:222–231. [PubMed]
  33. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 2005;280:11740–11748. [PubMed]
  34. Bragadottir G, Redfors B, Nygren A, Sellgren J, Ricksten SE. Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol. Scand 2009;53:1052–9. [PubMed]
  35. Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004;6:931–940. [PubMed]
  36. Hennig G, Behrens J, Truss M, Frisch S, Reichmann E, Birchmeier W. Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 1995;11:475–484. [PubMed]
  37. Zhurinsky J, Shtutman M, Ben-Ze’ev A. Plakoglobin and β-catenin: Protein interactions, regulation and biological roles. J Cell Sci 2000;113:3127–3139. [PubMed]
  38. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 2002;161:1881–1891. [PubMed]
  39. Legrand M, Almac E, Mik EG, et al. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am. J. Physiol. Renal Physiol 2009;296:F1109–17. [PubMed]
  40. Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000;289:950–953. [PubMed]


1. Access this article through OpenAthens

2. Access this article through your login credentials/Subscription

Get Access

3. Purchase this article at rate $55.00 and received Full-Text/PDF
You will have online immediate access to article following the completion of this purchase and you may download and print a copy of each article for your personal use. Use the coding below to purchase your article as PDF by credit card, debit card, will be asked to supply your billing card information. Before continue with your purchase please read carefully the BM-Publisher terms and conditions of purchase.

Purchase Article

For any technique error please contact us and will be response to sending purchase article by email.

Who Can Become a Reviewer?
Any expert in the article's research field can become a reviewer with American Journal of Biomedicine. Editors might ask you to look at a specific aspect of an article,...

Find out more

Thank you for visiting American Journal of BioMedicine. * = Required fields

[contact-form-7 404 "Not Found"]

Case Report
American Journal of BioMedicine Volume 5, Issue 4, pages 207-222
Received January 21, 2017; accepted April 23, 2017; published April 30, 2017

How to cite this article
Arndt MS, Wheaton WD, Welch WR, Payen WE. Epidemiology of acute lung injury in patients with cerebrovascular accident: a retrospective study. American Journal of BioMedicine 2017;5(4):207-222.

Case report outline
1. Abstract
2. Keywords
3. Introduction
4. Methods
5. Results
6. Discussion
7. References