Role of monocyte chemoattractant protein-1 (MCP-1) in atherosclerosis: Signature of monocytes and macrophages

Print Friendly, PDF & Email

Daniel Ramote; Jacks  Kishony; Leibler  Bren  

AJBM  Volume 2, Issue 1, pages 67–79, January 2014           Full Text-PDF


The monocyte chemoattractant protein-1 (MCP-1/CCL2) is a member of the C-C chemokine family, and a potent chemotactic factor for monocytes. MCP-1 is believed to be identical to JE, a gene whose expression is induced in mouse fibroblasts by platelet-derived growth factor. Two SNPs of CCL2, namely, G-927C and A-2578G, were found to be associated with carotid intima-media thickness, which reflects generalized atherosclerosis and is predictive of future vascular events. Monocyte chemoattractant protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of atherosclerosis-related diseases have increased exponentially during recent years. This review attempted to provide a perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of atherosclerosis, cardiovascular diseases, and dyslipidemia. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.

Keywords: MCP-1, Atherosclerosis, Monocyte, Macrophage, Proinflammatory cytokines


1. Ajuebor MN. Flower RJ. Hannon R. Christie M. Bowers K. Verity A. Perretti M. Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. J Leukoc Biol. 1998;63:108–116. [PubMed]

2. Bartoli C. Civatte M. Pellissier JF. Figarella-Branger D. CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies. Acta Neuropathol. 2001;102:385–392. [PubMed]

3. Calderon TM. Eugenin EA. Lopez L. Kumar SS. Hesselgesser J. Raine CS. Berman JW. A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol. 2006;177:27–39. [PubMed]

4. Cho ML. Yoon BY. Ju JH. Jung YO. Jhun JY. Park MK. Cho CS. Kim HY. Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-beta in fibroblast like synoviocytes of patients with RA. Exp Mol Med. 2007;39:499–507. [PubMed]

5. NG Yousif. Fibronectin promotes migration and invasion of ovarian cancer cells through up‐regulation of FAK–PI3K/Akt pathway. Cell biology international 2013; 38(1): 85-91.[PubMed]

6. Davies MH. Eubanks JP. Powers MR. Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis  2006;12:467–477. [PubMed]

7. Flores-Villanueva PO. Ruiz-Morales JA. Song CH. Flores LM. Jo EK. Montano M. Barnes PF. Selman M. Granados. A functional promoter polymorphism in monocyte chemoattractant ppotein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med. 2005;202:1649–1658. [PubMed]

8. Granata F. Frattini A. Loffredo S. Del Prete A. Sozzani S. Marone G. Triggiani M. Signaling events involved in cytokine and chemokine production induced by secretory phospholipase A2 in human lung macrophages. Eur J Immunol. 2006;36:1938–1950. [PubMed]

9. Everett W. Austin, Nasser Ghaly Yousif, Lihua Ao, Joseph C. Cleveland, David A. Fullerton and Xianzhong Meng. Ghrelin reduces myocardial injury following global ischemia and reperfusion via suppression of myocardial inflammatory response. American journal of BioMedicine 2013; 1(2): 38-48. [View at Publisher]

10. Huang SJ. Schatz F. Masch R. Rahman M. Buchwalder L. Niven-Fairchild T. Tang C. Abrahams VM. Krikun G. Lockwood CJ. Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells. J Reprod Immunol. 2006;72:60–73. [PubMed]

11. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. Obesity is associated with macrophage accumulation in adipose tissue. J.Clin.Invest 2003;112:1796–1808. [View Article]

12. Zacharioudaki V, Androulidaki A, Arranz A, Vrentzos G, Margioris AN, et al. (2009) Adiponectin promotes endotoxin tolerance in macrophages by inducing IRAK-M expression. Journal of Immunology 182: 6444–6451. [PubMed/NCBI]

13. Hu D, Fukuhara A, Miyata Y, Yokoyama C, Otsuki M, et al. (2013) Adiponectin Regulates Vascular Endothelial Growth Factor-C Expression in Macrophages via Syk-ERK Pathway. PLoS.ONE. 8: e56071. [Google Scholar]

14. Standiford TJ, Kuick R, Bhan U, Chen J, Newstead M, et al. (2011) TGF-beta-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30: 2475–2484. [View Article]

15. Srivastava RA (2011) Evaluation of anti-atherosclerotic activities of PPAR-alpha, PPAR-gamma, and LXR agonists in hyperlipidemic atherosclerosis-susceptible F(1)B hamsters. Atherosclerosis 214: 86–93. [PubMed/NCBI]

16. Yousif NG, Ao L, Fullerton DA, Meng X. Myocardial tissue tlr4-mediated mcp-1 production contributes to the mechanisms of myocardial injury following cold ischemia and reperfusion. SHOCK 2012; 35:65. [Google Scholar]

17. Duez H, Chao YS, Hernandez M, Torpier G, Poulain P, et al. (2002) Reduction of atherosclerosis by the peroxisome proliferator-activated receptor alpha agonist fenofibrate in mice. Journal of Biological Chemistry 277: 48051–48057. [View Article]

18. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG. CCL2/Monocyte chemoattractant protein (MCP)-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 2005; 96: 881–889. [Abstract/FREE Full Text]

19. Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 2004; 165: 439–447. [Medline]

20. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Res 2004; 94: 1543–1553. [Abstract/FREE Full Text]

21. Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. J Immunol 2000; 164: 6174–6179. [Abstract/FREE Full Text ]

22. Yousif NG,  Li J, Yousif F, Ao L, Jin C, Fullerton DA, Dinarello CA,  Meng X. Expression of Human Interleukine-37 Protects Mouse Heart Against Ischemic Injury Through Suppression of Monocyte Chemoattractant Protein-1-Mediated Mononuclear Cell Accumulation. Circulation 2011;124:21. [Google Scholar]

23. Genersch E, Hayess K, Neuenfeld Y, Haller H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J. Cell. Sci 2000;113(Pt 23):4319–4330. [Abstract/FREE Full Text]

24. Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 α loop. J. Immunol 2000;164:6174–6179. [Abstract/FREE Full Text]

25. Falk E. Pathogenesis of Atherosclerosis thogenesis of Atherosclerosis. Journal of the American College of Cardiology 2006;47(8):C7–C12. [Abstract/Full-Text

26. Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, Mulya A, Gebre AK, Willingham MC, Hiltbold EM, Mishra N. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem.. 2008; 283: 22930–22941. [CrossRef]

27. Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C,Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest 2007; 117: 3900–3908. [PubMed]

28. Witztum JL,  Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc. Med.. 2001; 11: 93–102. [PubMed]

29. Tarr PT, Edwards PA. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2.J. Lipid Res.2008; 49: 169–182 [CrossRef]

30. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008; : 365–375. [PubMed]

31. Shibata N, Glass CK. Regulation of macrophage function in inflammation and atherosclerosis. J. Lipid Res 2009; 50: S277–S281. [PubMed]

32. Schulte S, Sukhova GK, Libby P. Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am. J. Pathol 2008;172:1500–1508. [PubMed]

33. Ross R. The pathogenesis of atherosclerosis-an update. N. Engl. J. Med 1986;314:488–500. [PubMed]

34. Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest.. 2005; 115: 3149–3156. [CrossRef]

35. Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc. Med 2008; 18: 228–232. [PubMed]