Second-line therapy and MicroRNA plasma level in metastatic lung cancer patients: case-control study





Research Article

American Journal of BioMedicine
Volume 10, Issue 3, July 30 2022, Pages 100-110 | http://dx.doi.org/10.18081/2333-5106/2022.10/100

Wan- Chao 1, Xinxin Yang 1, Yafeng Kan 2*

Received  March 11 2022   Revised  April 30 2022   Accepted  May 19 2022   Published July 30 2022


 

Abstract

The first cause of cancer death was lung cancer among men and women. MicroRNAs are small noncoding regulatory RNAs with a length of 18–24 nucleotides. MicroRNAs could target more than 100 mRNAs, and they can affect many cellular processes. The objective of this study is investigating the role of miR-663a and miR-663b, in metastatic lung cancer patients compare with healthy people. The relationship between these microRNAs and chemoresistance was investigated through Real time polymerase chain reaction methodology used to determine the levels expression of miR-663a and miR-663b in the serum of 30 patients with metastatic lung cancer were treated with second line therapy versus 25 healthy individuals who follow up for one year. The resulted data showed that miR-663a expression was related to type of lung cancer and was significantly higher in metastatic squamous lung cancer group (P=0.012). While the expression of miR-663b was significantly correlated with the response to treatment, in which the expression of miR-663b was higher in the poor-response group (P=0.016). Inconclusion, this study showed that the high plasma level of miR-663a miR-663b may be related to chemoresistance in patients with metastatic lung cancer.

Keywords: miR-663a and miR-663b; Metastatic lung cancer; Squamous lung cancer

Copyright © 2022 Kan Y, et al., 2022. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article citationReferencesDownload citationStatistics
The citation data is computed by the following citation measuring services:

Cited by (CrossRef)
Google Scholar

1. Bell D, Betts K, Justo R, et al. Multicenter experience with 500 cardiocel implants used for the repair of congenital heart defects. Ann Thorac Surg. 2019;108(6):1883-1888.
https://doi.org/10.1016/j.athoracsur.2019.04.085

2. Konstantinidou MK, Moat N. Repair of tricuspid valve leaflet with cardiocel patch after traumatic tricuspid regurgitation. Ann Thorac Surg. 2017; 104(3):e221-e223.
https://doi.org/10.1016/j.athoracsur.2017.04.022
3. Porras D, Brown DW, Marshall AC, Del Nido P, Bacha EA, McElhinney DB. Factors associated with subsequent arch reintervention after initial balloon aortoplasty in patients with Norwood procedure and arch obstruction. J Am Coll Cardiol. 2011; 58:868-876.
https://doi.org/10.1016/j.jacc.2010.12.050
4. Neethling WM, Strange G, Firth L, Smit FE. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch. Interact Cardiovasc Thorac Surg. 2013;17(4):698-702.
https://doi.org/10.1093/icvts/ivt268
5. Bautista-Hernandez V, Marx GR, Gauvreau K, Pigula FA, Bacha EA, Mayer JE, Jr, del Nido PJ. Coarctectomy reduces neoaortic arch obstruction in hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2007; 133:1540-1546.
https://doi.org/10.1016/j.jtcvs.2006.12.067
6. Us MH, Sungun M, Sanioglu S, Pocan S, Cebeci BS, Ogus T, et al. A retrospective comparison of bovine pericardium and polytetrafluoroethylene patch for closure of ventricular septal defects. J Int Med Res. 2004; 32:218-21.
https://doi.org/10.1177/147323000403200216
7. Aupecle B, Serraf A, Belli E, Mohammadi S, Lacour-Gayet F, Fornes P, et al. Intermediate follow-up of a composite stentless porcine valved conduit of bovine pericardium in the pulmonary circulation. Ann Thorac Surg. 2002; 74:127-32.
https://doi.org/10.1016/S0003-4975(02)03639-1
8. Bennink GB, Hitchcock FJ, Molenschot M, Hutter P, Sreeram N. Aneurysmal pericardial patch producing right ventricular inflow obstruction. Ann Thorac Surg. 2001; 71:1346-7.
https://doi.org/10.1016/S0003-4975(00)02270-0
9. Li J, Ao L, Jin C, et al. Expression of Human Interleukine-37 Protects Mouse Heart Against Ischemic Injury Through Suppression of Monocyte Chemoattractant Protein-1-Mediated Mononuclear Cell Accumulation. Circulation. 2011;124:A8603.
10. Marelli AJ, Gurvitz M. From numbers to guidelines. Prog Cardiovasc Dis. 2011; 53:239-46.
https://doi.org/10.1016/j.pcad.2010.10.001
11. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007; 115:163-72.
https://doi.org/10.1161/CIRCULATIONAHA.106.627224
12. Vitanova K, Cleuziou J, Pabst von Ohain J, Burri M, Eicken A, Lange R. Recoarctation after Norwood I procedure for hypoplastic left heart syndrome: impact of patch material. Ann Thorac Surg. 2017;103(2):617-621.
https://doi.org/10.1016/j.athoracsur.2016.10.030
13. Larrazabal LA, Selamet Tierney ES, Brown DW, Gauvreau K, Vida VL, Bergersen L, Pigula FA, del Nido PJ, Bacha EA. Ventricular function deteriorates with recurrent coarctation in hypoplastic left heart syndrome. Ann Thorac Surg. 2008; 86:869-874. discussion 869-874.
https://doi.org/10.1016/j.athoracsur.2008.04.074
14. Pok S, Jacot JG. Biomaterials advances in patches for congenital heart defect repair. J Cardiovasc Transl Res. 2011; 4(5):646-654.
https://doi.org/10.1007/s12265-011-9289-8
15. Neethling WM, Strange G, Firth L, Smit FE. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch. Interact Cardiovasc Thorac Surg. 2013;17(4):698-702.
https://doi.org/10.1093/icvts/ivt268
16. Fixler DE, Nembhard WN, Salemi JL, Ethen MK, Canfield MA. Mortality in first 5 years in infants with functional single ventricle born in Texas, 1996 to 2003. Circulation. 2010; 121:644-650.
https://doi.org/10.1161/CIRCULATIONAHA.109.881904
17. Austin EW, Ao L, Cleveland JC, et al. Ghrelin reduces myocardial injury following global ischemia and reperfusion via suppression of myocardial inflammatory response. American journal of BioMedicine. 2013; 1(2):38-48.
https://doi.org/10.18081/ajbm/2333-5106-013-12/38-48
18. Burkhart HM, Ashburn DA, Konstantinov IE, De Oliveira NC, Benson L, Williams WG, Van Arsdell GS. Interdigitating arch reconstruction eliminates recurrent coarctation after the Norwood procedure. J Thorac Cardiovasc Surg. 2005; 130:61-65.
https://doi.org/10.1016/j.jtcvs.2005.02.060
19. Pavy C, Michielon G, Robertus JL, Lacour-Gayet F, Ghez O. Initial 2-year results of CardioCel® patch implantation in children. Interact Cardiovasc Thorac Surg. 2018;26(3):448-453.
https://doi.org/10.1093/icvts/ivx295
20. Burkhart HM, Ashburn DA, Konstantinov IE, et al. Interdigitating arch reconstruction eliminates recurrent coarctation after the Norwood procedure. J Thorac Cardiovasc Surg. 2005;130(1):61-65.
https://doi.org/10.1016/j.jtcvs.2005.02.060
21. Ghanayem NS, Cava JR, Jaquiss RD, Tweddell JS. Home monitoring of infants after stage one palliation for hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004; 7:32-38.
https://doi.org/10.1053/j.pcsu.2004.02.017
22. Ghanayem NS, Hoffman GM, Mussatto KA, Cava JR, Frommelt PC, Rudd NA, Steltzer MM, Bevandic SM, Frisbee SS, Jaquiss RD, Litwin SB, Tweddell JS. Home surveillance program prevents interstage mortality after the Norwood procedure. J Thorac Cardiovasc Surg. 2003; 126:1367-1377.
https://doi.org/10.1016/S0022-5223(03)00071-0
23. Yousif NG, Al-Amran FG. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice. BMC cardiovascular disorders. 2011; 11:1-7.
https://doi.org/10.1186/1471-2261-11-62
24. Ashcraft TM, Jones K, Border WL, et al. Factors affecting long-term risk of aortic arch recoarctation after the Norwood procedure. Ann Thorac Surg. 2008; 85(4):1397-1401.
https://doi.org/10.1016/j.athoracsur.2007.11.054
25. Chessa M, Dindar A, Vettukattil JJ, et al. Balloon angioplasty in infants with aortic obstruction after the modified stage I Norwood procedure. Am Heart J. 2000; 140(2):227-231.
https://doi.org/10.1067/mhj.2000.108238
26. Poirier NC, Drummond-Webb JJ, Hisamochi K, et al. Modified Norwood procedure with a high-flow cardiopulmonary bypass strategy results in low mortality without late arch obstruction. J Thorac Cardiovasc Surg. 2000; 120(5):875-884.
https://doi.org/10.1067/mtc.2000.109540
27. Ao L, Li J, Aly A, et al. Myocardial tissue TLR4 plays a major role in mediating myocardial injury following cold ischemia and reperfusion through up-regulation of MCP-1. Journal of Surgical Research. 2011; 2(165):181.
https://doi.org/10.1016/j.jss.2010.11.695

1. Access through OpenAthens2. PDF     XMLFor any technique error please contact us.
  •  

          PDF           XML

    How to cite this article
    Chao W, Yang X, Kan Y. Second-line therapy and MicroRNA plasma level in metastatic lung cancer patients: case-control study . American Journal of BioMedicine. 2022; 10(3): 100-110

    Article metric

    Archives