Sepsis-attenuated myocardial function: pathogenesis of injury with neutrophil recruitment crosstalk






Research Article

American Journal of BioMedicine
Volume 11, Issue 2,  Pages 65-75 | http://dx.doi.org/10.18081/2333-5106/2023.11/65

Hussain Sarfaraz*, Basmah Imran, Sharaf Abidi 1 

Received  30 January  2023   Revised  18 March 2023   Accepted  11 April 2023   Published  02 May 2023


Abstract

Acute myocardial injury may be induced by different causes, including myocardial ischemia-reperfusion injury, and sepsis, which represent the most common reasons for cardiac injury in hospitalized patients. Sepsis-induced myocardial injury is considered not to be associated with leukocyte infiltration into the myocytes but is shared with many crosstalk pathogeneses. In this experimental animal study, polymicrobial sepsis-induced was via cecal ligation and puncture model (CLP), in C57BL/6 male mice (25–30 g). By using neutrophil knockout mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution to the pathogenesis of CLP-induced attenuated myocardial function. We investigated the degree of myocardial injury evaluated by plasma troponin, echocardiography, and histological analyses. The pathogenesis of CLP-induced myocardial injury relies on circulating inflammatory mediators. In conclusion, these resulting data explained that myocardial injury pathogenesis may help in the treatments for myocardial injury patients.

Keywords: Myocardial injury; CLP; Neutrophil recruitment; Sepsis

Copyright: © 2023 Sarfaraz et al. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cited by other articlesReferencesDownload this articleStatistics
The citation data is computed by the following citation measuring services:

1. Ha T, Lu C, Liu L, et al. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. Am J Physiol Heart Circ Physiol 2010; 298:H984-H991.
https://doi.org/10.1152/ajpheart.01109.2009
2. Chang W, Xie JF, Xu JY, Yang Y. Effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomised trials. BMJ Open. 2018; 8:e019338.
https://doi.org/10.1136/bmjopen-2017-019338
3. Aronsen JM, Espe EK, Skårdal K, Hasic A, Zhang L, Sjaastad I. Noninvasive stratification of postinfarction rats based on the degree of cardiac dysfunction using magnetic resonance imaging and echocardiography. Am J Physiol Heart Circ Physiol 2017; 312:H932-H942.
https://doi.org/10.1152/ajpheart.00668.2016
4. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124:1382-1392.
https://doi.org/10.1172/JCI72181
5. Barlow SC, Doviak H, Jacobs J, al. Spinale FG. Intracoronary delivery of recombinant TIMP-3 after myocardial infarction: effects on myocardial remodeling and function. Am J Physiol Heart Circ Physiol 2017; 313:H690-H699.
https://doi.org/10.1152/ajpheart.00114.2017
6. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2017; 50:940-950.
https://doi.org/10.1016/j.yjmcc.2011.02.018
7. Bennardo M, Alibhai F, Tsimakouridze E, et al. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1243-R1254.
https://doi.org/10.1152/ajpregu.00200.2016
8. Frolkis I, Klein Y, Locker C, Adi N, Dahan E, Uretzsky G, Shapira I and Sorkine P. Vipera aspis venom reduces lethality and down-regulates tumor necrosis factor-alpha in a rat model of LPS-induced sepsis. Cytokine 2010; 49:319-324.
https://doi.org/10.1016/j.cyto.2009.11.019
9. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 2007; 35:1244-1250.
https://doi.org/10.1097/01.CCM.0000261890.41311.E9
10. Hubbard WJ, et al. Cecal ligation and puncture. Shock. 2005; 24(Suppl 1):52-57.
https://doi.org/10.1097/01.shk.0000191414.94461.7e
11. Benjamim CF, Hogaboam CM, Kunkel SL. The chronic consequences of severe sepsis. J Leukoc Biol 2004; 75:408-412.
https://doi.org/10.1189/jlb.0503214
12. Xiao H, Siddiqui J, Remick DG. Mechanisms of mortality in early and late sepsis. Infect Immun. 2006; 74:5227-5235.
https://doi.org/10.1128/IAI.01220-05
13. Rittirsch D, et al. Functional roles for C5a receptors in sepsis. Nat Med 2008; 14:551-557.
https://doi.org/10.1038/nm1753
14. Ao L, Jin C, Fullerton DA, Dinarello CA, Meng X, et al. Expression of human interleukine-37 protects mouse heart against ischemic injury through suppression of monocyte chemoattractant protein-1-mediated mononuclear cell accumulation. Circulation 2011; 124 (suppl_21):A8603-A8603.
15. Flierl MA, et al. Adverse functions of IL-17A in experimental sepsis. FASEB J 2008; 22:2198-2205.
https://doi.org/10.1096/fj.07-105221
16. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA 2016; 315:801-810.
https://doi.org/10.1001/jama.2016.0287
17. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence 2014; 5:4-11.
https://doi.org/10.4161/viru.27372
18. Ho J, Yu J, Wong SH, et al. Autophagy in sepsis: Degradation into exhaustion. Autophagy 2016; 12:1073-1082.
https://doi.org/10.1080/15548627.2016.1179410
19. Qi L, Pan H, Li D, Fang F, Chen D, Sun H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur J Pharmacol 2011; 668:201-207.
https://doi.org/10.1016/j.ejphar.2011.06.020
20. Takahashi W, Watanabe E, Fujimura L, et al. Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit Care 2013; 17:R160.
https://doi.org/10.1186/cc12839
21. Baiyun R, Li S, Liu B, et al. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol Environ Saf 2018; 161:655-661.
https://doi.org/10.1016/j.ecoenv.2018.06.046
22. Sagy M, Al-Qaqaa Y, Kim P. Definitions and pathophysiology of sepsis. Curr Probl Pediatr Adolesc Health Care 2013; 43:260-263.
https://doi.org/10.1016/j.cppeds.2013.10.001
23. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39:517-528.
https://doi.org/10.1007/s00281-017-0639-8
24. Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2019; 17:403-16.
https://doi.org/10.1038/s41579-019-0201-x
25. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity 2014; 40:463-75.
https://doi.org/10.1016/j.immuni.2014.04.001
26. Lu X, Wang J, Chen X, Jiang Y, Pan ZK. Rolipram Protects Mice from Gram-negative Bacterium Escherichia coli-induced Inflammation and Septic Shock. Sci Rep 2020; 10:175.
https://doi.org/10.1038/s41598-019-56899-6
27. Hochstadt A, Meroz Y, Landesberg G. Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? J Cardiothorac Vasc Anesth 2011; 25:526-35.
https://doi.org/10.1053/j.jvca.2010.11.026
28. Hadi N, QZ Fahdil Al-Amran, et al. Cardioprotective effects of irbesartan in polymicrobial sepsis. Herz 2017; 23:40-145.
29. Pathan N, Franklin JL, Eleftherohorinou H, et al. Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase. Crit Care Med 2011; 39:1692-1711.
https://doi.org/10.1097/CCM.0b013e3182186d27
30. Kotecha A, Vallabhajosyula S, Coville HH, Kashani K. Cardiorenal syndrome in sepsis: a narrative review. J Crit Care 2018; 43:122-127.
https://doi.org/10.1016/j.jcrc.2017.08.044
31. Zhang H, Zuo YJ. MicroRNA-218 alleviates sepsis inflammation by negatively regulating VOPP1 via JAK/STAT pathway. Eur Rev Med Pharmacol Sci 2018; 22: 620-5626.
32. Matkovich SJ, Al Khiami B, et al. Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis. Crit Care Med 2017; 45:407-414.
https://doi.org/10.1097/CCM.0000000000002207
33. Feng Y, Zhang M, Li Y, Chao W. Non-hematopoietic TLR2 contributes to neutrophil and cardiac function impairment during polymicrobial sepsis. Shock 2011; 36:370-380.
https://doi.org/10.1097/SHK.0b013e3182279868
34. Peng S, Xu J, Ruan W, Li S, Xiao F. PPAR-gamma activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev 2017; 2017:8326749.
https://doi.org/10.1155/2017/8326749
35. NG Yousif, FG Al-Amran. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice. BMC cardiovascular disorders 2011; 11(1):1-7.
https://doi.org/10.1186/1471-2261-11-62
36. Yang S, Wang Y, Gao H, Wang B. MicroRNA-30a-3p overexpression improves sepsis-induced cell apoptosis in vitro and in vivo via the PTEN/PI3K/ AKT signaling pathway. Exp Ther Med 2018; 15:2081-2087.
https://doi.org/10.3892/etm.2017.5644
37. Frencken JF, Donker DW, Spitoni C, et al. Myocardial Injury in Patients With Sepsis and Its Association With Long-Term Outcome. Circ Cardiovasc Qual Outcomes. 2018; 11:e004040.
https://doi.org/10.1161/CIRCOUTCOMES.117.004040

1. Access through OpenAthens

2. PDF     XML

For any technique error please contact us.

 

      PDF           XML

Sarfaraz H, Imran B, Abidi S. Sepsis-attenuated myocardial function: pathogenesis of injury with neutrophil recruitment crosstalk. American Journal of BioMedicine 2023; 11(2):65-75.

APA
Chandra, S., and Vijayakumar, V. (2023). Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 11(1), 10-21.doi: 10.18081/2333-5106/2023.11/10
MLA
Sambit Chandra; Sujeet D. Vijayakumar. “Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors”. American Journal of BioMedicine, 11, 1, 2023, 10-21. doi: 10.18081/2333-5106/2023.11/10
HARVARD
Chandra, S., Vijayakumar, V. (2023). Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 11(1), PP. 10-21.doi: 10.18081/2333-5106/2023.11/10
VANCOUVER
Chandra, S., Vijayakumar, V. Laparoscopic ovarian electrocauterization in polycystic ovarian syndrome: outcome and Influencing factors. American Journal of BioMedicine, 2023; 11(1):10-21.doi: 10.18081/2333-5106/2023.11/10

 
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

All articles published in American Journal of BioMedicine  are licensed under Copyright Creative Commons Attribution-NonCommercial 4.0 International License.